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1 Introduction 

  

1.1 The general requirements that testing and calibration laboratories must meet if they wish to 

demonstrate that they operate to a quality system, are technically competent and are able to 

generate technically valid results, are contained within ISO/IEC 17025 [5]. This international 

standard forms the basis for international laboratory accreditation and in cases of differences in 

interpretation always remains the authoritative document. M3003 is not intended as a 

prescriptive document and does not set out to introduce additional requirements to those in 

ISO/IEC 17025 but instead aims to provide amplification and guidance on the current 

requirements within the standard. 

  

1.2 The purpose of these guidelines is to support policy on the evaluation and reporting of 

measurement uncertainty for testing and calibration laboratories. Related topics, such as 

evaluation of conformity with specifications, are addressed in UKAS LAB 48 [14]. Several 

worked uncertainty examples are included in M3003 to illustrate how practical implementation 

can be achieved. Further practical guidance for Medical Laboratories meeting requirements of 

ISO 15189 [6] is provided in ISO TS 20914 [9]. 

  

1.3 The guidance in this document is based on information in the Guide to the Expression of 

Uncertainty in Measurement, hereinafter referred to as the GUM [1]. M3003 is consistent with 

the GUM suite of documents both in methodology and terminology. It does not, however, have 

the same breadth of scope as the GUM, which also includes other methods of uncertainty 

evaluation that may be more appropriate to a specific discipline, for example, the use of Monte 

Carlo simulation [2]. 

  

1.4 M3003 is aimed both at the beginner and at those more experienced in the subject of 

measurement uncertainty. In order to address the needs of an audience with a wide spectrum of 

experience, the subject is introduced in relatively straightforward terms and describes the basic 

concepts involved. Cross-references are made to a number of Appendices in which more 

detailed information is presented for those seeking fuller guidance on the subject. For a more in-

depth understanding of measurement uncertainty, courses such as the practitioner course 

offered by UKAS are recommended. 

  

1.5 A number of changes have been made since the publication of M3003 Edition 4. These are too 

numerous to list in detail. In general, they are: 

 • Editorial changes to address feedback and regular questions,  

 • Equation fonts have been converted throughout to improve presentation, 

 • Changes to improve clarity and consistency, 

• Appendices A, B, C, D, K, L, M, have been significantly revised to address minor errors 

and to improve clarity. 

  

1.6 No further changes of any significance will be made to M3003 Edition 5 during its lifetime. 

However, minor text modifications of an editorial nature may be made if the need is identified. 

Any such changes will be listed below. 

 

 Date Details of amendment 

   

   

   

  



The Expression of Uncertainty and Confidence in Measurement 

 

w: www.ukas.com  |  t: +44(0)1784 429000  |  e: info@ukas.com   

© United Kingdom Accreditation Service. UKAS copyright exists on all UKAS publications. 

M3003 Edition 5  Page 4 of 90 

2 Overview 

  

2.1 In many aspects of everyday life, we are accustomed to the doubt that arises when estimating 

how large or small things are. For example, if somebody asks, “what do you think the 

temperature of this room is?” we might say, “it is about 23 degrees Celsius”. The use of the word 

“about” implies that we know the room is not exactly 23 degrees but is somewhere near it. In 

other words, we recognise that there is some doubt about the value of the temperature that we 

have estimated. 

  

2.2 We could, of course, be a bit more specific. We could say, “it is 23 degrees Celsius give or take 

a couple of degrees”. The term “give or take” implies that there is still doubt about the estimate, 

but now we are assigning limits to the extent of the doubt. We have given some quantitative 

information about the doubt, or uncertainty, of our estimate. 

  

2.3 It is also quite reasonable to assume that we may be more sure that our estimate is within, say, 5 

degrees of the “true” room temperature than we are that the estimate is within 2 degrees. The 

larger the uncertainty we assign, the more confident we are that it encompasses the “true” value. 

Hence, for a given situation, the uncertainty is related to the level of confidence.  

  

2.4 So far, our estimate of the room temperature has been based on a subjective evaluation. This is 

not entirely a guess, as we may have experience of exposure to similar and known 

environments. However, in order to make a more objective measurement it is necessary to make 

use of a measuring instrument of some kind; in this case we can use a thermometer. 

  

2.5 Even if we use a measuring instrument, there will still be some doubt, or uncertainty, about the 

result. For example, we could ask: 

 

“Is the thermometer accurate?” 

 

“How well can I read it?” 

 

“Is the reading changing?” 

 

“I am holding the thermometer in my hand. Am I warming it up?” 

 

“The relative humidity in the room can vary considerably. Will this affect my results?” 

 

“Does it matter whereabouts in the room I take the measurement?” 

 

All these factors, and possibly others, may contribute to the uncertainty of our measurement of 

the room temperature. 

  

2.6 In order to quantify the uncertainty of the room temperature measurement we will therefore have 

to consider all the factors that could influence the result. We will have to make estimates of the 

possible variations associated with these influences. Let us consider the questions posed above. 

  

2.7 Is the thermometer accurate? 

  

2.7.1 In order to find out, it will be necessary to compare it with a thermometer whose accuracy is 

better known. This thermometer, in turn, will have to be compared with an even better 

characterised one, and so on. This sequence leads to the concept of traceability of 

measurements, whereby measurements at all levels can be traced back to agreed references. 

In most cases, ISO/IEC 17025 [5] requires that measurements are traceable to SI units, which is 
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usually achieved by an unbroken chain of comparisons originating at a national metrology 

institute. 

 

In other words, we need a traceable calibration. This calibration itself will provide a source of 

uncertainty, as the calibrating laboratory will assign a calibration uncertainty to the reported 

values. When used in a subsequent evaluation of uncertainty, this is often referred to as an 

imported uncertainty. 

  

2.7.2 In terms of the thermometer accuracy, however, a traceable calibration is not the end of the 

story. Measuring instruments change their characteristics as time goes by. Because they “drift” 

regular recalibration is necessary. It is therefore important to evaluate the likely change since the 

instrument was last calibrated. 

  

 If the instrument has a reliable history, it may be possible to predict what the measurement error 

will be at a given time in the future, based on past results, and apply a correction to the reading. 

This prediction will not be perfect and therefore an uncertainty on the corrected value will be 

present. In other cases, there may be insufficient past data, or it may not indicate a reliable 

trend, and a limit value may have to be assigned for the likely change since the last calibration. 

This value can be estimated from examination of changes that occurred in the past. Evaluations 

made using these methods yield the uncertainty due to secular stability, or changes with time, of 

the instrument. This change with time is commonly known as drift. 

  

2.7.3 There are other possible influences relating to the thermometer accuracy. For example, suppose 

we have a traceable calibration, but only at 15 °C, 20 °C and 25 °C. What does this tell us about 

its indication error at 23 °C? 

  

 In such cases we will have to make an estimate of the applicable calibration error, often by 

interpolation between points where calibration data is available. The associated measurement 

uncertainty might usually be interpolated in the same fashion, with some additional allowance for 

uncertainty in the method of interpolation. 

  

2.8 How well can I read it? 

  

2.8.1 There will inevitably be a limit to which we can resolve the reading we observe on the 

thermometer. If it is a liquid-in-glass thermometer, this limit will often be imposed by our ability to 

interpolate between the scale graduations. If it is a thermometer with a digital readout, digital 

rounding will define the limit. 

  

2.8.2 For example, suppose the last digit of a digital thermometer is rounded so that its displayed 

value changes in steps of 0.1 °C. The reading happens to be 23.4 °C. 

  

 The reading is a rounded representation of a larger series of values that the thermometer would 

indicate if it had more digits available. In the case of a reading of 23.4 °C, this represents all 

possible values in the range between 23.35 °C and 23.45 °C, which all round to 23.4 °C. 

 

 A reading of 23.4 °C therefore means that the value is somewhere between 23.35 °C and 

23.45 °C. In other words, the 0.1 °C resolution of the display has caused a rounding error 

somewhere between 0.05 °C and -0.05 °C (corresponding to plus or minus half of the display 

resolution). As we have no way of knowing whereabouts in this range the value is located, we 

have to assume the rounding error is zero with limits of ±0.05 °C. (Zero is the ‘expectation’ value 

– it is the best estimate based upon the available information). 

  

2.8.3 It can therefore be seen that there will always be an uncertainty of ± half of the change 

represented by one increment of the last displayed digit. This rounding error does not only apply 

to digital displays; it applies every time a number is recorded. If we write down a rounded result 
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of 123.456, we are imposing an identical effect by the fact that we have recorded this result to 

three decimal places, and an error not exceeding 0.0005 will arise. 

  

2.8.4 This source of uncertainty is frequently referred to as “resolution”, however it is more correctly 

the numeric rounding caused by finite resolution. 

  

2.9 Is the reading changing? 

  

2.9.1 Yes, it probably is! Such changes may be due to variations in the room temperature itself, 

variations in the performance of the thermometer and variations in other influence quantities, 

such as the way we are holding the thermometer. 

  

 So, what can be done about this? 

  

2.9.2 We could, of course, just record one reading and say that it is the measured temperature at a 

given moment and under particular conditions. This would have little meaning, as we know that 

the next reading, a few seconds later, could well be different. So, which is “correct”?  

  

2.9.3 In practice, we will probably take an average of several measurements in order to obtain a more 

representative value. In this way, we can “smooth out” the effect of short-term variations in the 

thermometer indication. This average, or arithmetic mean, of a number of readings can often be 

closer to the “true” value than any individual reading is. 

  

2.9.4 However, we can only take a finite number of measurements. This means that we will never 

obtain the “true” mean value that would be revealed if we could carry out an infinite (or very 

large) number of measurements. There will be an unknown error, and therefore an uncertainty, 

arising from the difference between our calculated mean value and the underlying “true” mean 

value. 

  

2.9.5 This uncertainty cannot be evaluated using methods like those we have already considered. Up 

until now, we have looked for evidence, such as calibration uncertainty and secular stability, and 

we have considered what happens with finite resolution by logical reasoning. The effects of 

variation between readings cannot be evaluated like this, because there is no background 

information available upon which to base our evaluation. 

  

2.9.6 The only information we might have is a series of readings and a calculated average, or mean 

value. We therefore need to use a statistical approach to determine how far our calculated mean 

could be away from the “true” mean. These statistics are quite straightforward… the so-called 

repeatability uncertainty is therefore estimated from the experimental standard deviation of the 

mean, often referred to as simply the standard deviation of the mean. 

 
NOTE: Standard deviation of the mean is also known as standard error. 

  

2.9.7 It is often convenient to regard the calculation of the standard deviation of the mean as a two-

stage process. It can be performed easily by most scientific calculators or spreadsheet software. 

  

2.9.8 First, we obtain the estimated repeatability standard deviation, 𝑠, e.g., using the values we 

have measured. This facility is indicated on most calculators by the function key xσn-1. On some 

calculators it is identified as s(x) or simply s.  

 

In Microsoft Excel the STDEV.S cell function can be used. 

  

2.9.9 The standard deviation of the mean is then obtained by dividing the estimate obtained in 2.9.8 by 

the square root of the number of measurements that contributed to the mean value. 
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2.9.10 For example, suppose we record five consecutive readings with our thermometer. These are 

23.0 °C, 23.4 °C, 23.1 °C, 23.6 °C and 22.9 °C, and we intend to report the mean 23.2 °C of these 

five values. 

  

2.9.11 We obtain an estimated standard deviation of 0.2915 °C. 

  

2.9.12 Five measurements contributed to the mean value, so we divide 0.2915 °C by the square root 

of 5, giving a repeatability estimate (standard deviation of the mean) equal to  
0.2915

√5
=

0.2915

2.236
= 0.1304 ℃. 

  

2.9.13 Further information on the statistical processes used for evaluation of repeatability can be found 

in Section 4. 

  

2.10 I am holding the thermometer in my hand. Am I warming it up? 

  

2.10.1 Quite possibly. There may be heat conduction from the hand to the temperature sensor. There 

may be radiated heat from the body impinging on the sensor. These effects may or may not be 

significant, but we will not know until an evaluation is performed. In this case, special 

experiments may be required in order to determine the significance of the effect. 

  

2.10.2 How could we do this? Some fairly basic methods come to mind. For example, we could set up 

the thermometer in a temperature-stable environment and read it remotely, without the operator 

nearby. We could then compare this result with that obtained when the operator is holding it in 

the usual manner, or in a variety of manners. This would yield empirical data on the effects of 

heat conduction and radiation. If such effects turn out to be significant, we could either improve 

the method so that operator effects are eliminated, or we could include a contribution to 

measurement uncertainty based on the results of the experiment. 

  

2.10.3 Consideration of the measurement method reveals a number of important issues. The 

measurement may not be independent of the operator and special consideration may have to be 

given to operator effects (we may have to train the operator to use the equipment in a particular 

way). Special experiments may be necessary to evaluate particular effects. Additionally, and 

significantly, evaluation of uncertainty may reveal ways in which the method can be improved, 

thus giving more reliable results. 

  

2.11 The relative humidity in the room can vary considerably. Will this affect my results? 

  

2.11.1 Maybe it will. If we are using a liquid in glass thermometer, it is difficult to see how the relative 

humidity could significantly affect the expansion of the liquid. However, if we are using a digital 

thermometer, it is possible that relative humidity could affect the electronics that amplify and 

process the signal from the sensor. The sensor itself could also be affected by relative humidity. 

  

2.11.2 As with other influences, we need means of evaluating any such effects. In this case, we could 

expose the thermometer to an environment in which the temperature can be maintained at a 

constant level, but the relative humidity can be varied… which would reveal how sensitive the 

thermometer is to the quantity we are concerned about. Alternatively, we might rely upon 

information published by the equipment manufacturer. 

  

2.11.3 This question also raises a general point that is applicable to all measurements. Every 

measurement we make has to be carried out in an environment of some kind; it is unavoidable. 

So, we have to consider whether any particular aspect of the environment could have an effect 

on the measured value and its uncertainty. 

  

2.11.4 The significance of a particular aspect of the environment has to be considered in the light of the 

specific measurement being made. For example, it is difficult to see how gravity could 
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significantly influence the reading on a digital thermometer. However, it certainly will affect the 

results obtained on a precision weighing machine that might be right next to the thermometer! 

  

2.11.5 The following environmental effects are amongst the most commonly encountered when 

considering measurement uncertainty: 

 

Temperature 

Relative humidity 

Barometric pressure 

Electric or magnetic fields 

Gravity 

Electrical supplies to measuring equipment 

Air movement 

Vibration 

Light and optical reflections 

 

Furthermore, some of these influences may have little effect as long as they remain constant but 

could affect measurement results when they start changing. Rate of change of temperature can 

be particularly important. 

  

2.11.6 It should be apparent by now that understanding of a measurement system is important in order 

to identify and quantify the various uncertainties that can arise in a measurement situation. 

Conversely, analysis of uncertainty can often yield a deeper understanding of the system and 

reveal ways in which the measurement process can be improved, which leads on to the next 

question… 

  

2.12 Does it matter where in the room I make the measurement? 

  

2.12.1 It depends on what we are trying to measure! Are we interested in the temperature at a specific 

location, or in the average of the temperatures encountered at any location within the room, or 

the average temperature at bench height?  

  

2.12.2 There may be further, related questions. For example, do we require the temperature at a 

particular time of day, or the average over a specific period of time? 

  

2.12.3 Such questions have to be asked, and answered, in order that we can devise an appropriate 

measurement method that gives us the information we require. Until we know the details of the 

method, we are not in a position to evaluate the uncertainties that will arise from that method. 

  

2.12.4 This question and those preceding it are important questions to ask. But the most important 

question of all is one that should be asked before we even select a method and start our 

uncertainty evaluation: 

  

2.13 “What exactly is it that I am trying to measure?” 

  

2.13.1 Until this question is answered, we are not in a position to carry out a proper evaluation of the 

uncertainty. The particular quantity of interest (the quantity subject to measurement) is known as 

the measurand. In order to evaluate the uncertainty in a measurement we must define the 

measurand, otherwise we are not in a position to know how any particular influence quantity 

affects the value we obtain for it. 

  

2.13.2 The implication of this is that there has to be a defined relationship between the influence (input) 

quantities and the measurand (output). This relationship is known as the measurement model. 

This can be written as a measurement equation that describes how each influence quantity 

affects the value assigned to the measurand. In effect, it is a mathematical description of the 
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measurement process. Further details about establishing a measurement equation can be found 

in Appendix D. A proper analysis of this process also gives the answer to another important 

question:  

  

2.14 “Am I actually measuring the quantity that I thought I was measuring?”   

  

2.14.1 Most measurement processes are such that the end result would be only an approximation to 

the “true” value because of assumptions and approximations inherent in the chosen 

measurement method. The model should recognise any such assumptions and uncertainties that 

may arise from them should be accounted for in the analysis. 

  

2.15 Summary 

  

2.15.1 This section of M3003 has given an overview of uncertainty and some insights into how 

uncertainties might arise. It has shown that we have to understand our measurement process 

and the way in which various influences can affect the result. It has also shown that analysis of 

uncertainty can have positive benefits in that it can reveal where enhancements can be made to 

measurement methods, hence improving the reliability of measurement results. 

  

2.15.2 The following sections of M3003 explore the issues identified in this overview in more detail. 
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3 In More Detail 

  

3.1 The Overview section of M3003 has provided an introduction to the subject of uncertainty 

evaluation and has explored a number of the issues involved. This section provides a slightly 

more formal description of these processes, using terminology consistent with that in the GUM. 

  

3.2 The International vocabulary of metrology (VIM) [4] defines a quantity (𝑄) as a property of a 

phenomenon, body or substance to which a magnitude (expressed as a number and a 

reference) can be assigned.  

  

3.3 The purpose of a measurement is to assign a magnitude to the measurand; the quantity 

intended to be measured. The assigned magnitude is considered to be the best estimate of the 

value of the measurand. The uncertainty evaluation process will encompass a number of other 

‘influence’ quantities that affect the result obtained for the measurand. These influence, or ‘input’, 

quantities are often referred to as 𝑋 and the ‘output’ quantity, i.e., the measurand, is referred to 

as 𝑌. 

  

3.4 As there will usually be several influence quantities, they are differentiated from each other by 

the subscript 𝑖. So, there will be several input quantities called 𝑋𝑖, where 𝑖 represents integer 

values from 1 to 𝑁, 𝑁 being the number of such quantities. In other words, there will be input 

quantities of 𝑋1, 𝑋2, … , 𝑋𝑁. 

  

3.5 Each of these input quantities will have a corresponding value. For example, one quantity might 

be the temperature of the environment – this will have a value, say 23 °C. A lower-case “𝑥” 

represents the estimated values of the quantities. Hence the value of 𝑋1 will be 𝑥1, that of 𝑋2 will 

be 𝑥2, and so on.  

  

3.6 The purpose of the measurement is to determine the best estimate of the measurand, 𝑌. As for 

the input quantities, the estimated value of the measurand is represented by the lower-case 

letter, i.e., 𝑦. One of the first steps is to establish the mathematical relationship 𝑌 = 𝑓(𝑋𝑖) 

between the values of the input quantities, 𝑋𝑖, and that of the measurand, 𝑌. This process is 

examined in Appendix D.  

  

3.7 The values 𝑥𝑖 of the input quantities 𝑋𝑖 will generally all have an associated uncertainty. This can 

be expressed as 𝑢(𝑥𝑖), the standard uncertainty of 𝑥𝑖. The process of ‘standardising’ the 

available information about the uncertainty in 𝑥𝑖 is described shortly. The uncertainty 𝑢(𝑦) 

associated with 𝑦 will involve a combination of the input uncertainties 𝑢(𝑥𝑖). 

  

3.8 Some uncertainties, particularly those associated with the determination of repeatability, have to 

be evaluated by statistical methods. Others have to be evaluated by examining other 

information, such as data in calibration certificates, evaluation of long-term drift, consideration of 

the effects of environment, etc. 

  

3.9 The GUM [1] differentiates between statistical evaluations and those using other methods. It 

categorises them into two types – Type A and Type B. 

  

3.10 A Type A evaluation of uncertainty is carried out using statistical analysis of a series of 

observations. Further details about Type A evaluations can be found in Section 4. 

  

3.11 A Type B evaluation of uncertainty is carried out using methods other than statistical analysis of 

a series of observations. Further details about Type B evaluations can be found in Section 5. 

  

3.12 In paragraph 3.3.4 of the GUM it is stated that the purpose of the Type A and Type B classification 

is to indicate the two different ways of evaluating uncertainty components, and the distinction 
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between Type A and Type B is for convenience in discussion only. Whether components of 

uncertainty are classified as `random' or `systematic' in relation to a specific measurement process 

or described as Type A or Type B depending on the method of evaluation, all components 

regardless of classification are modelled by probability distributions, usually quantified by their 

standard deviation or variance.  

  

3.13 Therefore, any convention as to how uncertainty evaluations are classified does not affect the 

estimation of the combined uncertainty (defined in 3.36). In this guide, when the terms `random' 

and `systematic' are used they refer to the effects of uncertainty on a specific measurement 

process. It is the usual case that random components require Type A evaluations and systematic 

components require Type B evaluations, but there are exceptions. 

  

3.14 For example, a random effect can produce a fluctuation in an instrument's indication, which is 

both noise-like in appearance and significant in terms of uncertainty. But it may only be possible 

to characterise it in terms of limits to the range of indicated values. This is not a common 

situation but when it occurs a Type B evaluation of the uncertainty component will be required. 

This is done by assigning limit values and an associated probability distribution, as in the case of 

other Type B evaluations. 

  

3.15 The input uncertainties, associated with the values 𝑥𝑖 of the influence quantities 𝑋𝑖, arise in a 

number of forms. Some may be characterised as limit values between which little is known about 

the most likely place (within the limits) where the “true” value may lie. A good example of this is 

the numeric rounding caused by finite resolution described in paragraph 2.8. In this example, it is 

equally likely that the underlying value is anywhere within the defined limits of ± half of the 

change represented by one increment of the last displayed digit. This concept is illustrated in 

Figure 1. 

 

3.16                                                                      𝑎              𝑎 

 

 

 

                      probability density 

 

                                                                                                                  𝑋 

 

                                                      𝑥𝑖 − 𝑎               𝑥𝑖             𝑥𝑖 + 𝑎 

    

  Figure 1 

The expectation value 𝑥𝑖 lies in the centre of a distribution of possible values with a 

half-width, or semi-range, of 𝑎. 

 

 

3.17 In the resolution example, 𝑎 = 0.5 (for the resolution of 1.0). 

  

3.18 As all underlying values are presumed equally likely, we can say that there is equal probability of 

the value of 𝑥𝑖 being anywhere within the range 𝑥𝑖 − 𝑎 to 𝑥𝑖 + 𝑎, and zero probability of it being 

outside these limits.  

  

3.19 Thus, the uncertainty contribution associated with the value 𝑥𝑖 is characterised by a probability 

density function (PDF), describing the range and relative likelihood of possible values of the 

measurand.  

  

 By the GUM definition, the standard uncertainty 𝑢(𝑥𝑖) is equal to the standard deviation of the 

corresponding PDF. 
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3.20 The probability distribution associated with an input quantity is a reflection of the available 

knowledge about that particular quantity. In many cases, there will be insufficient information 

available to justify choosing a more ‘informative’ distribution than a uniform, or rectangular, 

probability distribution (as in Figure 1). 

  

3.21 If more information is available, it may be possible to assign a different probability distribution to 

the value of a particular input quantity. For example, a measurement may be taken as the 

difference in readings on a digital scale – typically, the zero reading will be subtracted from a 

reading taken further up the scale. If the sensitivity is constant, both of these readings might 

have an associated rectangular distribution of identical size. If two identical rectangular 

distributions, each of magnitude ±𝑎, are combined then the resulting distribution will be 

triangular with a semi-range of ±2𝑎. 

 

  

 

 

 

 

 

 

         probability density 

 

                                                                                                                         𝑋 

 

                                         𝑥𝑖 − 2𝑎                      𝑥𝑖                        𝑥𝑖 + 2𝑎  

 

 Figure 2 

  Combination of two identical rectangular distributions, each with semi-

range limits of ±𝑎, yields a triangular distribution with a semi-range of ±2𝑎. 

 

 

3.22 There are other possible distributions that may be assigned. For example, when making 

measurements of radio-frequency power an uncertainty arises due to imperfect matching 

between the source and the termination. The imperfect match usually involves an unknown 

phase angle which means that a cosine function characterises the probability distribution for the 

uncertainty. Harris and Warner [17] have shown that a symmetrical U-shaped probability 

distribution arises from this effect. 

 

  

  

 

 

 

 

 

         probability density 

 

 

                                                                                                            𝑋 

 

                                                   𝑥𝑖 − 𝑎                   𝑥𝑖               𝑥𝑖 + 𝑎 

 

 Figure 3 

  U-shaped distribution, associated with RF mismatch uncertainty. For this situation, 

𝑥𝑖 is more likely to be close to one or other of the edges of the distribution. 
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3.23 An evaluation of the effects of (non) repeatability, performed by statistical methods, will usually 

yield a Gaussian or normal distribution. Further details on this process can be found in Section 4. 

  

3.24 When a number of distributions of whatever form are combined it can be shown that, apart from in 

exceptional cases, the resulting probability distribution tends to the normal form in accordance with 

the Central Limit Theorem.[16] The importance of this fact is that it makes it possible to use the 

well-known properties of the normal distribution to assign a coverage probability to the likelihood 

of the true value of the measurand being within a certain range of values, known as the coverage 

interval.  

 

  

 
                                                                                                                                 𝑋 

 

 Figure 4 

  The normal, or Gaussian, probability distribution, obtained when a number of 

distributions, of any form, are combined and the conditions of the Central Limit 

Theorem are met. In practice, if three or more distributions of similar magnitude 

are present, they will usually combine to form a reasonable approximation to the 

normal distribution.  

The size of the distribution is described in terms of a standard deviation. The 

shaded area bounds a region 1 standard deviation from the centre of the 

distribution. This corresponds to approximately 68% of the area under the curve. 

 

 

 

3.25 The exceptional case arises when one (or more) inputs to the combined uncertainty is dominant; in 

this circumstance, to varying degrees the resulting distribution resembles that of the dominant 

contribution(s). 

  

 NOTE 1: If the dominant contribution is normal, then clearly the resulting distribution will also be normal. 

 NOTE 2: The above statement and note may not be true when the measurement model is non-linear. 

  

3.26 Whenever input uncertainties are expressed in terms of limit values (e.g., limits of a rectangular 

distribution) rather than standard deviations, some processing is needed to ‘standardise’ them to 

obtain 𝑢(𝑥𝑖), as described below. 

  

3.27 When it is possible to assess only the upper and lower bounds of an error (as in the case of digital 

rounding) a rectangular probability distribution should be assumed for the uncertainty associated 

with this error. Then, if 𝑎𝑖 is the semi-range limit, the standard uncertainty is given by 𝑢(𝑥𝑖) =
𝑎𝑖

√3
.  

 

Table 1 gives the expressions for various situations. 
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 Table 1 - Expression used to obtain the standard uncertainty for various probability distributions 

 Assumed 

probability 

distribution 

Expression used to 

obtain the standard 

uncertainty 

 

Comment or example 

 Rectangular 𝑢(𝑥𝑖) =
𝑎𝑖

√3
 A digital thermometer gives readings to one decimal place, 

that is they are expressed to within 0.1 °C. The numeric 

rounding caused by finite resolution will have semi-range 

limits of 0.05 °C. Thus, the corresponding standard 

uncertainty will be  

𝑢(𝑥𝑖) =
𝑎𝑖

√3
=

0.05 ℃

1.732
= 0.029 ℃ 

 U-shaped 𝑢(𝑥𝑖) =
𝑎𝑖

√2
 A mismatch uncertainty associated with the calibration of an 

RF power sensor has been evaluated as having semi-range 

limits of 1.3 %. Thus, the corresponding standard uncertainty 

will be  

𝑢(𝑥𝑖) =
𝑎𝑖

√2
=

1.3 %

1.414
= 0.92 % 

 Triangular 𝑢(𝑥𝑖) =
𝑎𝑖

√6
 A tensile testing machine is used in a testing laboratory 

where the air temperature can vary randomly but relatively 

quickly and does not depart from the nominal value by more 

than 3 °C. The machine has a large thermal mass and is 

therefore most likely to be at the mean air temperature, with 

no probability of being outside the 3 °C limits. It is reasonable 

to assume a triangular distribution; therefore the standard 

uncertainty for its temperature is  

𝑢(𝑥𝑖) =
𝑎𝑖

√6
=

3 ℃

2.449
= 1.2 ℃ 

 Normal 

 
(from 

repeatability 

evaluation) 

𝑢(𝑥𝑖) =
𝑠

√𝑛
 A statistical evaluation of repeatability uncertainty is obtained 

in terms of repeatability standard deviation 𝑠 and the number 

of values 𝑛 contributing to the reported value.  

 Normal 

 

(from a 

calibration 

certificate) 

𝑢(𝑥𝑖) =
𝑈

𝑘
 

A calibration certificate normally quotes an expanded 

uncertainty 𝑈 at a specified, high coverage probability. A 

coverage factor, 𝑘, will have been used to obtain this 

expanded uncertainty from the combination of standard 

uncertainties. It is therefore necessary to divide the 

expanded uncertainty by the same coverage factor to obtain 

the standard uncertainty. (See 3.42)  

 Normal 

 
(from a 

specification, 

e.g. a 

manufacturer’s 

specification) 

𝑢(𝑥𝑖) =
Tolerance

𝑘
 

Sometimes specifications are quoted at a given coverage 

probability (historically referred to as confidence level), e.g., 

95 % or 99 %. In such cases, a normal distribution might be 

assumed, and the tolerance limit is divided by the coverage 

factor 𝑘 for the stated coverage probability. (See 3.46) 

For a coverage probability of 95 %, 𝑘 = 2 and for a coverage 

probability of 99 %, 𝑘 = 2.58.  

 

If a coverage probability is not stated, then a rectangular 

distribution should be assumed. 

 

3.28 The quantities 𝑋𝑖 that affect the measurand 𝑌 may not have a direct, one to one, relationship with 

it. There may be a scaling factor, such as a multiplicative constant or different measurement 

units, or 𝑌 may not vary linearly with 𝑋𝑖 (as in the relationship between area and radius of a 

circle). 
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3.29 For example, a dimensional laboratory may use steel gauge blocks for calibration of measuring 

tools. A significant influence quantity is temperature. Because the gauge blocks have a 

significant temperature coefficient of expansion, there is an uncertainty that arises in their length 

due to an uncertainty in temperature  

  

3.30 In order to translate the temperature uncertainty into an uncertainty in length units, it is 

necessary to know how sensitive the length of the gauge block is to temperature. In other words, 

a sensitivity coefficient is required. 

  

 In this example, the steel used in the manufacture of gauge blocks has a temperature coefficient 

of expansion of approximately +11.5 × 10−6 per °C, which provides the value for the sensitivity 

coefficient. 

  

3.31 The sensitivity coefficient associated with each input estimate 𝑥𝑖 is represented by 𝑐𝑖  . It is the 

partial derivative of the model function 𝑓(𝑋𝑖) with respect to 𝑋𝑖, evaluated at the input estimates 

𝑥𝑖.  It is given by 

 
𝑐𝑖 =

𝜕𝑓

𝜕𝑋𝑖

|
𝑋𝑖=𝑥𝑖

≈
𝜕𝑦

𝜕𝑥𝑖

 

  

 In other words, it describes how the output estimate 𝑦 varies with a corresponding small change 

in an input estimate 𝑥𝑖. 

  

3.32 If the functional relationship is not well known for a particular measurement system, or it cannot 

easily be differentiated, the sensitivity coefficients can usually be obtained by the practical 

approach of changing one of the input variables by a known amount, whilst keeping all other inputs 

constant, and noting the change in the output estimate. 

  

3.33 In effect, this ‘numerical’ approach approximates the partial derivative 
𝜕𝑦

𝜕𝑥𝑖
 by the quotient 

Δ𝑦

Δ𝑥𝑖
, where 

Δ𝑦 is the change in 𝑦 = 𝑓(𝑥𝑖) resulting from a change Δ𝑥𝑖 in 𝑥𝑖. It is important to choose the 

magnitude of the change Δ𝑥𝑖 around 𝑥𝑖 carefully. It should be balanced between being sufficiently 

large to obtain adequate numerical accuracy in Δ𝑦 and sufficiently small to provide a 

mathematically sound approximation to the partial derivative. The following example illustrates this 

approach. 

 

 

Example 

 

The height ℎ of a flagpole is determined 

by measuring the angle obtained when 

observing the top of the pole at a 

specified distance 𝑑. Thus ℎ = 𝑑 tan 𝛷  

 

Both ℎ and 𝑑 are in units of length but 

are related by tan Φ. In other words, 

ℎ = 𝑓(𝑑, 𝛷) = 𝑑 tan 𝛷.  

 

If the measured distance is 7.0 m and 

the measured angle is 37°, the estimated 

height is  

ℎ = 7.0 tan (37°) m = 5.275 m. 

  

 

 

 

 

 

 

 

 

 

 

 

                 𝛷 

 

 

                                      𝑑 
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3.34 If the maximum error in 𝑑 is, say, 0.1 m then the estimate of ℎ could be anywhere between  

(7.0 − 0.1). tan(37°)m and (7.0 + 0.1). tan(37°)m, i.e., between 5.200 m and 5.350 m. So, a 

change of ±0.1 m in the input quantity 𝑥𝑖 has resulted in a change of ±0.075 m in the output 

estimate 𝑦. The sensitivity coefficient is therefore estimated to be 𝑐𝑑 =
0.075

0.1
= 0.75. 

  

3.35 Similar reasoning can be applied to the uncertainty in the angle 𝛷. If the maximum error in 𝛷 is 

0.5°, then the estimate of ℎ could be anywhere between 7.0 tan(36.5°)m and 7.0 tan(37.5°)m, 

i.e., between 5.179 m and 5.371 m. A change of ±0.5° in the input quantity 𝑥𝑖 has resulted in a 

change of ±0.096 m in the output estimate 𝑦. The sensitivity coefficient is therefore estimated to 

be  

𝑐𝛷 =
0.096 m

0.5°
= 0.192 metre per degree. 

  

3.36 Once the standard uncertainties 𝑢(𝑥𝑖) and the sensitivity coefficients 𝑐𝑖 have been evaluated, the 

uncertainties can be combined in order to give a single value of uncertainty to be associated with 

the estimate 𝑦 of the measurand 𝑌. That value is known as the combined standard uncertainty 

and is represented by the symbol 𝑢c(𝑦). 

  

 NOTE: The subscript “c” in 𝑢c(𝑦) is superfluous and can be omitted. It is retained here for consistency with the GUM [1]. 

  

3.37 The combined standard uncertainty is usually calculated from: 

  

 

𝑢c(𝑦) = √∑ 𝑐𝑖
2𝑢2(𝑥𝑖)

𝑁

𝑖=1

= √∑ 𝑢𝑖
2(𝑦)

𝑁

𝑖=1

 (1) 

 where  

  

 𝑢𝑖(𝑦) = |𝑐𝑖|𝑢(𝑥𝑖) 

  

 is the standard uncertainty corresponding to the 𝑖th input quantity, expressed in terms of the 

measurand. 

  

 NOTE: Equation (1) only applies when all 𝑥𝑖 are independent otherwise GUM equation 13 should be used. 

  

3.38 In other words, the individual standard uncertainties, expressed in terms of the measurand, are 

squared; these squared values are summed, and the square root is taken. 

  

3.39 An example of this process is presented below, using the data from the measurement of the 

flagpole described above. For the purposes of the example, it is assumed that the repeatability of 

the process has been evaluated by making repeated measurements of the flagpole height, giving 

an estimated standard deviation of the mean of 0.05 metres. See Section 4 for further details 

about the evaluation of repeatability. 

  

 Note that there is no standardised format for presenting the content of an uncertainty budget and 

many variations will be encountered in practice. In this table, to save on space, the standard 

uncertainties 𝑢(𝑥𝑖) have not been separately evaluated and reported. Instead, all calculations 

are performed in a single stage which is summarised in the final column. 
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Source of 

uncertainty 
Uncertainty 

Probability 

distribution 
Divisor 

Sensitivity 

coefficient, 

𝑐𝑖 

Standard uncertainty 

𝑢𝑖(𝑦) 

 Distance from 

flagpole 
0.1 m  Rectangular √3 0.75 

0.1 m

√3
0.75 = 0.0433 m 

 
Angle 

measurement 
0.5° Rectangular √3 0.192 m/° 

0.5°

√3
0.192 m/°

= 0.0554 m 

 Measurement 

Repeatability 
0.05 m Normal 1 1 

0.05 m

1
1 = 0.05 m 

 Combined standard uncertainty 𝑢c(𝑦) = √0.04332 + 0.05542 + 0.052  =  0.0863 m 

  

 NOTE 1: The columns headed “Uncertainty” and “Probability distribution” represent the known information about the 

corresponding input.  

The term “Uncertainty” is used here in a general sense and might, as in the case of the first two terms, correspond to the 

‘half-width’ for a range of possible values (e.g., for a range ±0.1 m, the half-width is 0.1 m). In the case of the final input 

for this example (measurement repeatability) it represents a standard deviation. 

The “Probability distribution” summarises the nature of the information known about the respective inputs and, in 

association with the “Uncertainty” information determines the relevant “Divisor”. In this example the ‘Rectangular’ 

distributions reflect the lack of all information other than the limit values  

The “Divisor” serves to standardize the information to establish the standardised input uncertainty 𝑢(𝑥𝑖).  

 

NOTE 2: As is the case for all uncertainty evaluations, the combined standard uncertainty is a consequence of applying 

GUM principles to a measurement model. In this example the model is ℎ = 𝑑 tan 𝛷 + δℎ𝑟  See Appendix D Measurement 

Equations or [2] for a detailed explanation of processes for establishing a measurement model. 

  

3.40 In accordance with the Central Limit Theorem, the PDF for 𝑦 is a normal distribution with 

standard deviation equal to 𝑢c(𝑦), as illustrated in Figure 5. 

 

   

 

 

  𝑦  

  5.275 m  

                  𝑦 − 0.0863 m                          𝑦 + 0.0863 m 

 

Figure 5 

The measured value 𝑦 is at the centre of a normal distribution 

with a standard deviation equal to 𝑢c(𝑦). The numerical 

values relate to the example discussed above. 

 

 

 

3.41 For a normal distribution,  one standard deviation encompasses 68.3 % of the area under the 

curve. This means that there is about 68 % probability that the measurand lies within these 

limits. 
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3.42 The GUM recognises the need for providing a coverage interval with a higher coverage probability 

and achieves this by defining the coverage interval in terms of expanded uncertainty, 𝑈, which is 

obtained by multiplying the combined standard uncertainty by a coverage factor. The coverage 

factor is given the symbol 𝑘, thus the expanded uncertainty is given by  

 

 𝑈 = 𝑘 𝑢c(𝑦) (2) 

 

 Where necessary to avoid ambiguity, subscripts can be attached to both 𝑈 and 𝑘 to reflect 

the corresponding coverage probability, e.g., 𝑈𝑝, 𝑘𝑝, 𝑈95%, 𝑘95%, … 

  

3.44 In accordance with generally accepted international practice, it is recommended that a coverage 

factor of 𝑘 = 2 is used to calculate the expanded uncertainty. This value of 𝑘 will give a 

coverage probability of approximately 95 %, assuming a normal distribution. 

  

 NOTE: A coverage factor of 𝑘 = 2 actually provides a coverage probability of 95.45 % for a normal distribution. For 

convenience this is approximated to 95 % (which actually corresponds to a coverage factor of 𝑘 = 1.96). However, the 

difference is not generally found to be significant when model assumptions and the reliability of input quantities is taken 

into consideration. 

  

3.45 For example:  

The measurement of the height of the flagpole had a combined standard uncertainty 𝑢c(𝑦) of 

0.0863 m. Hence the expanded uncertainty  

𝑈 = 𝑘 𝑢c(𝑦) = 2 × 0.0863 m =  0.17 m. 

  

3.46 There may however be situations where a different coverage probability is required. For 

example, in safety-critical situations a higher coverage probability may be more appropriate. 

The table below gives the coverage factor necessary to obtain various levels of coverage for 

a normal distribution. 

  

  Coverage probability Coverage factor  

  𝑝 𝑘  

  90 % 1.64  

  95 % 1.96  

  95.45 % 2.00  

  99 % 2.58  

  99.73 % 3.00  

 

3.47 There may also be situations where a normal distribution cannot be assumed, and a different 

coverage factor may be needed in order to obtain a coverage probability of approximately 95 %. 

Such situations are described in Appendix B and Appendix C. 
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4 Type A Evaluation of Standard Uncertainty 

  

4.1 If an uncertainty is evaluated by statistical analysis of a series of observations, it is known as a 

Type A evaluation. 

  

4.2 A Type A evaluation will normally be used to obtain a value for the repeatability uncertainty of a 

measurement process. For some measurements, this ‘random’ component of uncertainty may not 

be significant in relation to other contributions to uncertainty. It is nevertheless desirable for any 

measurement process that the relative importance of random effects be established. 

  

 When there is a spread in a sample of measurement results, the arithmetic mean (average) of the 

results should be calculated. If there are 𝑚 independent repeated values for a quantity, 𝑄 then the 

mean value �̅� is given by: 

 

 
�̅� =

1

𝑚
∑ 𝑞𝑗 =

𝑞1 + 𝑞2 + ⋯ + 𝑞𝑚

𝑚

𝑚

𝑗=1

 (3) 

 

4.3 The values obtained (𝑞𝑗) are considered to be a random, finite sample arising from a 

measurement process whose underlying variability is characterised by a standard deviation .  

 

It is instructive to ask - if we repeated the set of measurements… would we obtain the same 

mean value? I.e., would we get the same value for �̅� ? This seems unlikely (except in the case 

when the measurements are limited by poor resolution). In most cases, we would actually see a 

distribution of values for �̅�.  

For samples of size 𝑛 the standard deviation of the distribution of these sample means is 𝜎 √𝑛⁄ , 

known as the standard deviation of the mean (sometimes referred to as the standard error). 

  

4.4 In practice however, it is not usually possible to obtain the value of 𝜎 and an estimate 𝑠 is instead 

used, thus standard repeatability uncertainty 

 

 
𝑢rep =

𝑠

√𝑛
 (4) 

 

4.5 The dataset used to evaluate the estimate �̅� can be used to obtain an estimate 𝑠 for the standard 

deviation . 

 

 

𝑠 = 𝑠(𝑞𝑗) = √
1

(𝑚 − 1)
∑(𝑞𝑗 − �̅�)

2
𝑚

𝑗=1

 (5) 
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4.6 Example: Four measurements were made to estimate the value of a quantity 𝑞 and the 

repeatability for the value. The results obtained were 3.42, 3.88, 2.99 and 3.17. 

The mean value, 

�̅� =
1

𝑚
∑ 𝑞𝑗 =

3.42 + 3.88 + 2.99 + 3.17

4

𝑚

𝑗=1

= 3.365 

 

The estimated standard deviation, 

𝑠 = 𝑠(𝑞𝑗) = √
1

(𝑚 − 1)
∑(𝑞𝑗 − �̅�)

2
𝑚

𝑗=1

= 0.386 

 

The estimated repeatability is therefore, 

𝑢rep =
𝑠

√𝑛
=

0.386

√4
= 0.193 

 

where in this case 𝑛 = 𝑚. 
  

4.7 It may not always be practical or possible to repeat the measurement many times during a test or 

a calibration. In these cases, a more reliable estimate of the standard deviation may sometimes 

be obtainable from previously obtained data, based on a larger number of readings. 

  

 This approach must be treated with caution – it relies on the reliability of the previously obtained 

data to represent the variation in the present measurements, i.e., it assumes that the underlying 

standard deviation 𝜎 is the same in both cases. A previous estimate of standard deviation can 

only be used if there has been no subsequent change in the measuring system or procedure that 

could have an effect on the repeatability. If an apparently excessive spread in measurement 

values is found, the cause should be investigated and resolved before proceeding further. 

  

4.8 Example: Suppose that two measurements were made to estimate the value of a quantity 𝑥, i.e., 

𝑛 = 2.  

However, the repeatability is to be estimated from 𝑚 = 20 previously obtained measurements, 

with standard deviation 

𝑠 = 0.247 

 

The estimated repeatability is therefore, 

𝑢rep =
𝑠

√𝑛
=

0.247

√2
= 0.175 

  

  

 NOTE: The degrees of freedom under such circumstances are 𝑚– 1, where 𝑚 is the number of measurements in the prior 

evaluation. Indeed, this is the reason that a large number of readings in a prior evaluation can give a more reliable 

estimate when only a few measurements can be made during the routine procedure. Degrees of freedom are discussed 

further in Appendix B. 
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5 Type B Evaluation of Standard Uncertainty 

  

5.1 If an uncertainty is evaluated by non-statistical analysis, it is known as a Type B evaluation. 

  

5.2 Type B measurement uncertainties usually arise from fixed but unknowable (or poorly known) 

measurement errors. In evaluating the components of uncertainty, it is necessary to consider and 

include at least the following possible sources: 

  

(a) For measuring instruments - the imported uncertainties associated with their calibration and any 

drift or instability in their values or readings. 

  

(b) The reported uncertainty assigned to reference materials and any drift or instability in their values. 

  

(c) Effects arising from the use of ancillary equipment, including items such as connecting leads, 

pipework, heaters etc., and any drift or instability in their values or readings. 

  

(d) The equipment or item being measured, for example its resolution and any instability during the 

measurement. It should be noted that the anticipated long-term performance of an item being 

calibrated is not normally included in the uncertainty evaluation for that calibration. 

  

(e) The operational procedure. 

  

(f) The effects of environmental conditions on any or all of the above. 

  

5.3 Having identified all the possible Type B components of uncertainty based as far as possible on 

experimental data or on theoretical grounds, they should be characterised in terms of standard 

uncertainties based on assigned probability distributions. The probability distribution of an 

uncertainty obtained from a Type B evaluation can take a variety of forms, but it is generally 

acceptable to assign a well-defined distribution for which the standard uncertainty can be 

obtained from a simple calculation. These distributions and sample calculations are presented in 

paragraphs 3.15 to 3.22 and in more detail elsewhere, e.g., JCGM-101 [2]. 

  

 NOTE: It is a basic feature of the GUM framework that standard uncertainty is taken as the standard deviation of the 

assigned probability distribution.  

  

5.4 Whenever possible, corrections should be made for known errors revealed by calibration or other 

sources. (It is not possible to make corrections for (random) repeatability errors) 

The convention is that an error is given a positive sign if the measured value is greater than the 

expected value. The correction for error therefore involves subtracting the error from the measured 

value. On occasions, to simplify the measurement process, it may be convenient to treat such an 

error, when it is small compared with other uncertainties (and when doing so has an insignificant 

effect upon the overall evaluation) as if it were a systematic uncertainty of the uncorrected error 

magnitude. 

  

5.5 Measurement errors should not be confused with mistakes.  

Common examples of mistakes are incorrectly applied corrections, transcription errors, and 

faults in software designed to control or report on a measurement process. The effects of such 

mistakes cannot readily be included in the evaluation of uncertainty and care is needed to avoid 

them. 
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6 Reporting of Results 

  

6.1 After the expanded uncertainty has been calculated, usually for a coverage probability of 95 %, 

the estimated value of the measurand and associated expanded uncertainty should be reported 

as 

𝑦 ± 𝑈 and accompanied by the following statement: 

  

6.2 "The reported expanded uncertainty is based on a standard uncertainty multiplied by a 

coverage factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The 

uncertainty evaluation has been carried out in accordance with UKAS requirements". 

  

6.3 In cases where the procedure of Appendix B has been followed the actual value of the coverage 

factor should be substituted for 𝑘 = 2 and the following statement used: 

  

6.4 "The reported expanded uncertainty is based on a standard uncertainty multiplied by a 

coverage factor 𝑘 = 𝑋𝑋, which for a t-distribution with 𝑣eff = 𝑌𝑌 effective degrees of 

freedom corresponds to a coverage probability of 95.45 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements". 

  

6.5 In circumstances where a dominant non-Gaussian Type B contribution occurs, and the procedures 

described in Appendix C have been followed the following statements should be used: 

  

6.6 “The reported expanded uncertainty is based on a standard uncertainty obtained by 

combining a dominant Type B uncertainty with other smaller uncertainties. The standard 

uncertainty has been multiplied by a coverage factor 𝑘 = 𝑋𝑋 which, for this particular 

combination, corresponds to a coverage probability of 95.45 %. The uncertainty 

evaluation has been carried out in accordance with UKAS requirements. 

 

For the purpose of further propagation, the measurement uncertainty can be imported 

into subsequent uncertainty budgets in terms of: 

1. a rectangular distribution with half width of 𝑎R = 𝑌𝑌, and 

2. a normal distribution with a standard uncertainty 𝑢N = 𝑍𝑍” 

  

6.7 If uncertainty is being reported as an analytical expression, refer also to Appendix L. 

  

6.8 For the purposes of this guide "approximately" is interpreted as meaning sufficiently close that 

any difference may be considered to be insignificant. 

  

6.9 Uncertainties are usually expressed in units of the measurand or as relative values, for example as 

a percentage (%), parts per million (ppm), parts in 10𝑥, 
μV

V
, etc.  

  

6.10 Measurement uncertainties should generally be reported to two decimal digits, as it is seldom 
justified to report more. The numerical form of the measured value in the final statement should be 
reported with the same number of decimal places as the measurement uncertainty.  

  

6.11 Rounding should always be carried out at the end of the process in order to avoid the effects of 

cumulative rounding errors. 
  

6.12 In situations where the PDF describing inputs to an uncertainty evaluation are asymmetric, or 

where the measurement model is non-linear, the resulting PDF for the measurand may also be 

asymmetric. In such cases Monte Carlo Simulation (as described, for example, in JCGM-101 [2]) 

offers a more suitable approach to evaluation of measurement uncertainty and coverage intervals. 
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7 Step by Step Procedure for Evaluation of Measurement Uncertainty 

  

 The following is a step-by-step guide to the use of this guide for the treatment of uncertainties. The 

left-hand column in the table gives the general case while the right-hand column indicates how this 

relates to example K.4 in Appendix K. Although this example describes a calibration activity, the 

process is quite general and applies to most measurement situations. 

  

 General case 

 

Example K.4: Calibration of a weight of nominal 

value 10 kg of OIML Class M1 

 

   

7.1 Determine the mathematical relationship between 

values of the input quantities and that of the 

measurand: 

 

𝑌 = 𝑓(𝑋1, 𝑋2, … 𝑋𝑁) 

 

See Appendix D for details. 

It will be assumed that the unknown weight, 𝑊𝑋, can be 

obtained from the following relationship: 

 

𝑊𝑋 = 𝑊𝑆 + δ𝐷𝑆 + δ𝐼𝑑 + δ𝐶 + ∆𝐴𝑏 + δ𝑊𝑟 

   

   

7.2 Identify all corrections that have to be applied to 

the results of measurements of a quantity 

(measurand) for the stated conditions of 

measurement. 

 

It is not normal practice to apply corrections for this 

class of weight and the comparator has no 

measurable linearity error. 

 

Estimates for these values are therefore taken to be:  

Drift of standard mass since last calibration δ𝐷𝑆 = 0 

Effect of least significant digit resolution δ𝐼𝑑 = 0 

Comparator linearity correction δ𝐶 = 0 

Correction for air buoyancy ∆𝐴𝑏 = 0 

Repeatability error δ𝑊𝑟 = 0 
 

However, finite (i.e., non-zero) uncertainty 

contributions have been determined for each of 

these inputs. 
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 General case 

 

Example K.4: Calibration of a weight of nominal 

value 10 kg of OIML Class M1 

 

   

7.3 List components of uncertainty associated with 

Type B inputs, including corrections and 

uncorrected systematic errors treated as 

uncertainties. 

 

Seek prior experimental work or theory as a basis 

for assigning uncertainties and probability distribu-

tions to the systematic components of uncertainty. 

 

Calculate the standard uncertainty for each 

component of uncertainty, obtained from Type B 

evaluations, as in Table 1. 

 

For assumed rectangular distributions: 

 

𝑢(𝑥𝑖) =
𝑎𝑖

√3
 

 

For assumed triangular distributions: 

 

𝑢(𝑥𝑖) =
𝑎𝑖

√6
 

 

For assumed normal distributions: 

 

𝑢(𝑥𝑖) =
𝑈

𝑘
 

 

or consult [2] if the assumed probability distribution 

is not covered in this publication. 

 

Source of uncertainty 

 

uncertainty 

(mg) 

 

Distribution* 

   

𝑊𝑆   Calibration of std. mass 30 N (𝑘 = 2) 

   

δ𝐷𝑆  Drift of standard mass 30 R 

   

δ𝐼𝑑  Resolution effects 10 T 

   

δ𝐶   Comparator linearity 3 R 

   

∆𝐴𝑏   Air buoyancy 10 R 

   

Then, in standardised form: 

 

𝑢(𝑥1) = 𝑢(𝑊𝑆) =
30 mg

2
= 15 mg  

 

𝑢(𝑥2) = 𝑢(δ𝐷𝑆) =
30 mg

√3
= 17.3 mg  

 

𝑢(𝑥3) = 𝑢(δ𝐼𝑑) =
10 mg

√6
= 4.08 mg  

 

𝑢(𝑥4) = 𝑢(δ𝐶) =
3 mg

√3
= 1.73 mg  

 

𝑢(𝑥5) = 𝑢(∆𝐴𝑏) =
10 mg

√3
= 5.77 mg  

 

*see glossary for explanation of labels, N, R, T. 

   

7.4 Use prior knowledge or make trial measurements 

and calculations to determine if there is to be a 

random component of uncertainty that is 

significant compared with the effect of the other 

components of uncertainty. 

From previous knowledge of the measurement process it 

is known that there is a significant random component of 

uncertainty. 

   

   

7.5 If a random component of uncertainty is significant 

make repeated measurements to obtain the mean 

from equation (3): 

 

�̅� =
1

𝑚
∑ 𝑞𝑗 =

𝑞1 + 𝑞2 + ⋯ + 𝑞𝑚

𝑚

𝑚

𝑗=1

 

 

Three measurements were made of the difference 

between the unknown weight and the standard weight, 

from which the mean difference was calculated: 

 

�̅�𝑆 =
0.015 + 0.025 + 0.020

3
= 0.020 g 
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 General case 

 

Example K.4: Calibration of a weight of nominal 

value 10 kg of OIML Class M1 

 

   

7.6 If correlation is suspected use the guidance in 

paragraph D.3 or consult other referenced 

documents. 

None of the input quantities is considered to be 

correlated to any significant extent; therefore 

Equation (1) can be used to calculate the combined 

standard uncertainty 

   

   

7.7 Either calculate the standard deviation of the mean 

value from equations (4) and (5): 

 

𝑠 = 𝑠(𝑞𝑗) = √
1

(𝑚 − 1)
∑(𝑞𝑗 − �̅�)

2
𝑚

𝑗=1

 

 

𝑢rep =
𝑠

√𝑛
=

𝑠 (𝑞
𝑗
)

√𝑛
 

 

or refer to the results of previous repeatability 

evaluations with an estimate 𝑠𝑝 based on a larger 

number of readings: 

 

𝑠 = 𝑠𝑝 

 

𝑢rep =
𝑠

√𝑛
=

𝑠𝑝

√𝑛
 

 

where 𝑚 is the number of readings used in the 

evaluation of 𝑠 and 𝑛 is the number of readings that 

contribute to the evaluation of the mean value. 

A previous Type A evaluation had been made to 

determine the repeatability of the comparison using 

the same type of 10 kg weights. The standard 

deviation was determined from 𝑚 = 10 

measurements using the conventional bracketing 

technique and was calculated, to be  

𝑠(δ𝑊𝑟) = 8.7 mg 

 

Since the number of determinations taken when 

calibrating the unknown weight was 3 this is the value 

of 𝑛 that is used to calculate the standard deviation of 

the mean using equation (4): 
 

𝑢(𝑥6) = 𝑢rep =
𝑠(δ𝑊𝑟)

√𝑛
=

8.7

√3
= 5.0 mg  
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 General case 

 

Example K.4: Calibration of a weight of nominal 

value 10 kg of OIML Class M1 

 

   

7.8 
Calculate the combined standard uncertainty for 

uncorrelated input quantities using equation (1) if 

absolute values are used: 

𝑢c(𝑦) = √∑ 𝑐𝑖
2𝑢2(𝑥𝑖)

𝑁

𝑖=1

= √∑ 𝑢𝑖
2(𝑦)

𝑁

𝑖=1

 

where 𝑐𝑖 is the partial derivative  

𝑐𝑖 =
𝜕𝑓

𝜕𝑋𝑖
|

𝑋𝑖=𝑥𝑖

≈
𝜕𝑦

𝜕𝑥𝑖
, 

or a known sensitivity coefficient. 

 

Alternatively use equation (8) if the standard 

uncertainties are all relative values and 𝑌 = 𝑓(𝑋𝑖) is a 

pure product of terms 

𝑢c(𝑦)

𝑦
= √∑ [

𝑝𝑖𝑢(𝑥𝑖)

|𝑥𝑖|
]

2

 

𝑁

𝑖=1

 

where 𝑝𝑖 are known positive or negative exponents in 

the functional relationship. 

The units of all standard uncertainties are in terms of 

those of the measurand, i.e., milligrams, and the 

functional relationship between the input quantities 

and the measurand is a linear summation; therefore, 

all the sensitivity coefficients are unity (𝑐𝑖 = 1). 

 

Applying equation (1) gives 

 

𝑢c(𝑊𝑋) = √152 + 17.322 + 4.082 + 1.732 + 5.772 + 52 

 

𝑢c(𝑊𝑋) = 25 mg 

   

   

7.11 If there is a dominant Type A contribution (i.e., a 

significant value obtained from a small number of 

readings), use Appendix B to calculate a suitable 

alternative value for coverage factor 𝑘 and use this 

value to calculate the expanded uncertainty. 

 

Similarly, if there is a dominant Type B contribution, 

use Appendix C to calculate a suitable alternative 

value for coverage factor 𝑘 and use this value to 

calculate the expanded uncertainty. 

 

Then, calculate the expanded uncertainty 

𝑈𝑝 = 𝑘𝑝 𝑢c(𝑦) 

 

𝑈95% = 2 × 24.55 mg = 49 mg 

 

A coverage probability of approximately 95 % is 

obtained with 𝑘 = 2. It was not necessary to use an 

alternative value for 𝑘 as there are no dominant 

Type A or Type B contributions. 

 
NOTE: 

The evaluation includes a single Type A component for 

which the standard deviation, 𝑠(δ𝑊𝑟) is based upon 𝑚 = 10 

values, for which there are 

𝜐rep = (𝑚 − 1) = 9 degrees of freedom. 

All other components are Type B, for which 𝜐 = , therefore 

𝜐eff =
𝑢c

4(𝑦)

𝑢rep4(𝑦)

(𝑚−1)

= 5145, i.e., the Type A input is not dominant 

Also, the 𝑟-value for the largest Type B component is 0.99, 

much less that a threshold value of 1.42 for dominant Type B 
   

   

7.12 Report the result and the expanded uncertainty in 

accordance with Section 6. 
The measured value of the 10 kg weight is               

10 000.025 g ±  0.049 g. 

 

The reported expanded uncertainty is based on a 

standard uncertainty multiplied by a coverage factor 

𝑘 = 2, providing a coverage probability of 

approximately 95 %. The uncertainty evaluation has 

been carried out in accordance with UKAS 

requirements. 
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Appendix A Calibration and Measurement Capability 

  

A.1 The Calibration and Measurement Capability (CMC), defines the measurement capabilities, 

ranges and boundaries of a calibration activity. In particular it defines the lowest measurement 

uncertainty that can be achieved during a calibration under normal conditions.  

  

A.2 For an accredited calibration laboratory, the CMC is described in the Schedule of Accreditation. 

The associated measurement uncertainty relates to the calibration of real items for which the 

laboratory has been accredited, using processes that were the subject of assessment. 

  

A.3 The measurement uncertainty is calculated according to the procedures described in this guide, 

and in the GUM [1], and is normally stated as an expanded uncertainty at a coverage probability 

of 95 %, which usually requires a coverage factor of 𝑘 = 2. 

  

A.4 An accredited laboratory is not permitted to quote a smaller uncertainty in certificates issued 

under its accreditation but may report an equal or larger uncertainty if appropriate. For example, if 

a particular item under calibration itself contributes significantly to the uncertainty (e.g., through 

limited resolution or significant non-repeatability) then the uncertainty reported on a calibration 

certificate will naturally be increased to account for such factors. 

  

A.5 Refer to ILAC-P14 [11] and to UKAS LAB 45 [15] for further explanation of Calibration and 

Measurement Capability. 

  

 NOTE: The term CMC also applies to the measurement capabilities of National Metrology Institutes that are published in 

the BIPM key comparison database (KCDB) of the CIPM MRA. 
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Appendix B Coverage Factor when there is a single dominant Type A input 

  

B.1 In some cases, it may not be practical to base a Type A evaluation on a large number of readings. 

In these situations, if it is also the case that the Type A input is a significant part of the combined 

uncertainty, this could result in the coverage probability being significantly less than 95 % if a 

coverage factor of 𝑘 = 2 is used. In these situations, the value of 𝑘, or more precisely 𝑘𝑝, where 𝑝 

is the confidence probability, should be based on a t-distribution rather than a normal distribution. 

This value of 𝑘𝑝 will give an expanded uncertainty, 𝑈𝑝, that maintains the coverage probability at 

approximately the required level 𝑝.  

 

 

 

                                                  𝑦– 𝑘𝑢                   𝑦                    𝑦 + 𝑘𝑢 

  

 Figure 6 

  In Figure 6, the solid line depicts a normal distribution with standard deviation (standard 

uncertainty) 𝑢.  

A specified proportion 𝑝 of the values under the curve are encompassed by the interval 

between 𝑦– 𝑘𝑢 and 𝑦 + 𝑘𝑢.  

An example of the t-distribution is superimposed, using dashed lines. For the 

t-distribution, a greater proportion of the values lies outside the interval 𝑦– 𝑘𝑢  to 𝑦 + 𝑘𝑢, 

and a smaller proportion lies inside this region. An increased value of 𝑘 is therefore 

required to restore the original coverage probability. This new coverage factor, 𝑘𝑝, is 

obtained by evaluating the effective degrees of freedom of 𝑢𝑐(𝑦) and obtaining the 

corresponding value 𝑡𝑝, e.g., from a  t-distribution table. The required coverage factor is 

then 𝑘𝑝 = 𝑡𝑝  

 

  

 

B.2 In order to obtain a value for 𝑘𝑝 it is necessary to obtain an estimate of the effective degrees of 

freedom, 𝜐eff , of the combined standard uncertainty 𝑢c(𝑦). The GUM [1] recommends that the 

Welch-Satterthwaite equation is used to calculate a value for 𝜐eff based on the degrees of freedom, 

𝜐𝑖 , of the individual standard uncertainties 𝑢𝑖(𝑦); where 

 

 
𝜐eff =

𝑢c
4(𝑦)

∑
𝑢𝑖

4(𝑦)
𝜐𝑖

𝑁
𝑖=1

 (6) 

  

B.3 The degrees of freedom, 𝜐𝑖, for contributions obtained from Type A evaluations are 𝑚 − 1, where 

𝑚 is the number of values used to evaluate 𝑢𝑖(𝑦). 

  

B.4 It is often possible to take the degrees of freedom, 𝜐𝑖, of Type B uncertainty contributions as being 

infinite, that is, their value is known with a very high degree of reliability. If this is the case then the 

calculation simplifies, as all the terms relating to the Type B uncertainties become zero. This case 

is illustrated in the example in paragraph B.10. 

  

B.5 However, it is possible for a Type B contribution to come from a calibration certificate, in the form of 

an uncertainty based on a t-distribution (as is described in this Appendix) rather than a normal 
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distribution. This is an example of a Type B contribution that does not have infinite degrees of 

freedom. In this eventuality the degrees of freedom will be as quoted on the calibration certificate. 

  

B.6 Having obtained a value for 𝜐eff , the corresponding value from the t-distribution can be obtained, 

either from tables (such as the table below), or by calculation. 

  

B.7 Unless otherwise specified, the values corresponding to a coverage probability of 𝑝 = 95.45 % 

should be used. 

  

B.8 Normally 𝜐eff will not be an integer and, when using tabulated data, it will be necessary to 

interpolate between the values given in the table. Linear interpolation will suffice for 𝜐eff > 3 in the 

table provided below, higher-order interpolation should be used otherwise, or else the next lower 

value of 𝜐eff may be used. 

  

 To calculate 𝑡𝑝 directly the Excel spreadsheet function         T.INV.2T(1 − 𝑝, 𝜐eff) 

 can be used. 

  

B.9 The required coverage factor is then 𝑘𝑝 = 𝑡𝑝. This is the coverage factor required to calculate the 

expanded uncertainty, 𝑈𝑝, from 𝑈𝑝 =  𝑘𝑝 𝑢c(𝑦). 

Unless otherwise specified, the coverage probability 𝑝 will usually be 95.45 %. 

  

B.10 Example 

  

B.10.1 In a measurement system a Type A evaluation, based on 4 observations, gave a value of 𝑢𝑖(𝑦) of 

3.5 units. There were 5 other contributions all based on Type B evaluations for each of which 

infinite degrees of freedom had been assumed. The combined standard uncertainty, 𝑢c(𝑦), had a 

value of 5.7 units.  

Then, using the Welch-Satterthwaite equation: 

  

 
𝜐eff =

5.74

3.54

4 − 1
+ 0 + 0 + 0 + 0 + 0

=
5.74

3.54 × 3 = 21.1 

  

B.10.2 In the t-distribution table, the value of 𝜐eff for a coverage probability 𝑝 = 95.45 %, immediately 

lower than 21.1 is 20. This gives a value for 𝑘𝑝 of 2.13 and this is the coverage factor that should 

be used to calculate the expanded uncertainty…  

The expanded uncertainty is 5.7 × 2.13 = 12.14 units. 
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 Degrees of 

freedom, 𝜐 

Values of 𝑡𝑝(𝜐) from the t-distribution for 𝜐 degrees of freedom 

𝑝 = 68.27 % 𝑝 = 90 % 𝑝 = 95 % 𝑝 = 95.45 % 𝑝 = 99 % 𝑝 = 99.73 % 

       

1 1.84 6.31 12.71 13.97 63.66 235.78 

2 1.32 2.92 4.30 4.53 9.92 19.21 

3 1.20 2.35 3.18 3.31 5.84 9.22 

4 1.14 2.13 2.78 2.87 4.60 6.62 

5 1.11 2.02 2.57 2.65 4.03 5.51 

       

6 1.09 1.94 2.45 2.52 3.71 4.90 

7 1.08 1.89 2.36 2.43 3.50 4.53 

8 1.07 1.86 2.31 2.37 3.36 4.28 

9 1.06 1.83 2.26 2.32 3.25 4.09 

10 1.05 1.81 2.23 2.28 3.17 3.96 

       

11 1.05 1.80 2.20 2.25 3.11 3.85 

12 1.04 1.78 2.18 2.23 3.05 3.76 

13 1.04 1.77 2.16 2.21 3.01 3.69 

14 1.04 1.76 2.14 2.20 2.98 3.64 

15 1.03 1.75 2.13 2.18 2.95 3.59 

       

16 1.03 1.75 2.12 2.17 2.92 3.54 

17 1.03 1.74 2.11 2.16 2.90 3.51 

18 1.03 1.73 2.10 2.15 2.88 3.48 

19 1.03 1.73 2.09 2.14 2.86 3.45 

20 1.03 1.72 2.09 2.13 2.85 3.42 

       

25 1.02 1.71 2.06 2.11 2.79 3.33 

30 1.01 1.70 2.04 2.09 2.75 3.27 

35 1.01 1.70 2.03 2.07 2.72 3.23 

40 1.01 1.68 2.02 2.06 2.70 3.20 

45 1.01 1.68 2.01 2.06 2.69 3.18 

       

50 1.01 1.68 2.01 2.05 2.68 3.16 

100 1.005 1.660 1.984 2.025 2.626 3.077 

∞ 1.000 1.645 1.960 2.000 2.576 3.000 
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Appendix C Coverage Factor when there is a single dominant Type B input 

  

C.1 It is quite common in some measurement processes, particularly calibrations, for there to be a 

component of uncertainty derived from a Type B evaluation that is dominant in magnitude 

compared all other components. In these circumstances it can no longer be assumed that the 

Central Limit Theorem applies (resulting in a normal distribution for the output, 𝑦.)  

  

C.2 A commonly encountered example arises from the resolution of a digital indicating instrument. This 

will have a rectangular distribution which, if the half-width 𝑎 is large, may dominate the shape of 

the distribution for output 𝑦. Consequently, the properties of the normal distribution can no longer 

be used to establish the coverage factor for a required coverage probability. 

  

C.3 As calibration results are required to be presented in terms of a coverage interval, a different 

approach has to be taken to obtain a suitable coverage factor. A method based upon the use of 

tabulated values is described below. 

  

C.4 The presence of a dominant rectangular input quantity can be detected by a ‘rule of thumb’… 

for a 95.45 % coverage probability, it will ‘dominate’ (i.e. the error if using a coverage factor of  

𝑘 = 2 will be more than 5 %) if its standard uncertainty 𝑢R(𝑦) is more than about 1.42 times the 

combined standard uncertainty 𝑢N(𝑦) for the remaining 𝑁 − 1 inputs (assuming that these result 

in a normal distribution). 

 

I.e., a rectangular term ‘dominates’ when 
𝑢R(𝑦)

𝑢N(𝑦)
≳ 1.42, or inversely  

𝑢N(𝑦)

𝑢R(𝑦)
≲ 0.70 

 

 where 

  

 𝑢R(𝑦) = 𝑐R

𝑎

√3
=

𝑎R

√3
 

  

 which defines effective half width 𝑎R = 𝑐R𝑎, 

  

 and (excluding the dominant term) 

  

 

𝑢N(𝑦) = √∑ 𝑢𝑖
2(𝑦)

𝑁−1

𝑖=1

 

  

 which as expected combine to give 

  

 
𝑢𝑐(𝑦) = √𝑢R

2(𝑦) + 𝑢N
2 (𝑦) 

  

  

C.5 Example 

A digital voltmeter is calibrated by observing its indication 𝑉ind when it measures an applied 

reference voltage 𝑉ref. The measurement error 𝑉 is: 𝑉 = 𝑉ind − 𝑉ref. 

 

The reference voltage is 𝑉ref = 1.00000 V; and the digital voltmeter reading is 𝑉ind = 1.001 V.  

 

The expanded uncertainty (𝑘 = 2) of the applied voltage is 𝑈(𝑉ref) = 0.00019 V. 
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The only other uncertainty of significance is due to the rounding of the voltmeter display, which 

has a resolution of 0.001 V; therefore, there will be a possible rounding error of ±0.0005 V for 

which a rectangular probability distribution is assumed. 

  

 The standard uncertainty associated with the potentially dominant rectangular term is 

  

 
𝑢R(𝑦) = 𝑐𝑅

𝑎

√3
= 1 ×

0.0005 V

√3
= 0.000289 V 

  

 The standard uncertainty associated with the remaining terms (in this case there is just one 

term) is 

  

 

𝑢N(𝑦) = √∑ 𝑢𝑖
2(𝑦)

𝑁−1

𝑖=1

=
0.00019 V

2
= 0.000095 V 

  

 The value of the corresponding ratio is 
𝑢N(𝑦)

𝑢R(𝑦)
= 0.329 

  

 The value is less than 0.70 which indicates that the term dominates, and a normal distribution 

cannot be assumed for 𝑦 

  

C.6 A suitable coverage factor can be obtained from tables of factors derived from a convolution 

between the dominant distribution and the distribution assumed for the combined remainder of 

the terms (usually a normal distribution) 

  

C.7 If a rectangular distribution and a normal distribution are convolved, the coverage factor 𝑘 for a 

coverage probability of 95.45 % may be obtained from the following table: 

 

 𝑢N(𝑦)

𝑢R(𝑦)
 𝑘95.45% 

𝑢N(𝑦)

𝑢R(𝑦)
 𝑘95.45% 

𝑢N(𝑦)

𝑢R(𝑦)
 𝑘95.45% 

 0.00 1.65 0.50 1.84 0.95 1.95 

 0.10 1.66 0.55 1.85 1.00 1.95 

 0.15 1.68 0.60 1.87 1.10 1.96 

 0.20 1.70 0.65 1.89 1.20 1.97 

 0.25 1.72 0.70 1.90 1.40 1.98 

 0.30 1.75 0.75 1.91 1.80 1.99 

 0.35 1.77 0.80 1.92 2.00 1.99 

 0.40 1.79 0.85 1.93 2.50 2.00 

 0.45 1.82 0.90 1.94 ∞ 2.00 

 

C.8 For the example introduced above the coverage factor 𝑘 = 1.76. 

  

 The standard uncertainty for the example is 

  

 
𝑢𝑐(𝑦) = √𝑢R

2(𝑦) + 𝑢N
2 (𝑦) = √0.000 2892 + 0.000 0952 V = 0.000 30 V 

  

 and the corresponding expanded uncertainty is 

  

 𝑈 = 𝑘 𝑢𝑐(𝑦) = 1.76 × 0.000 304 V = 0.000 54 V 
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C.9 This approach provides a suitable coverage factor for establishing the coverage interval, 

however for the purposes of propagation of uncertainties it is more helpful also to describe the 

uncertainty in two parts - corresponding to the dominant distribution, and the distribution 

representing the balance of the terms (usually taken as a normal distribution) 

  

 “The reported expanded uncertainty is based on a standard uncertainty obtained by 

combining a dominant Type-B uncertainty with other smaller uncertainties. The standard 

uncertainty has been multiplied by a coverage factor 𝑘 = 𝑋𝑋 which, for this particular 

combination, corresponds to a coverage probability of 95.45 %. 

 

For the purpose of further propagation, the measurement uncertainty can be imported 

into subsequent uncertainty budgets in terms of: 

1. a rectangular distribution with half width of 𝑎R = 𝑌𝑌, and 

2. a normal distribution with a standard uncertainty 𝑢N = 𝑍𝑍” 

  

C.10 The example described at C1.5 can be summarised and reported as follows  

  

 Symbol Source of uncertainty Value / V Probability distribution Divisor 𝑐𝑖 𝑢𝑖(𝑉) / V 

 𝑽𝐫𝐞𝐟 Uncertainty of applied voltage 0.00019 Normal 2 1 0.000095 

 𝑉ind Digital rounding of indicator 0.0005 Rectangular √3 1 0.000289 

 
𝑢c(𝑉) Combined standard uncertainty 

 Convolved 
0.000095

0.000289
= 0.329 

  

0.000304 

 𝑈 Expanded uncertainty 
 Convolved 

𝑘 = 1.76 

  
0.000535 

  

 Reported result: 

 

For an applied voltage of 1.00000 V the voltmeter reading was 1.001 V 

 

The measurement error was 𝑉 = 𝑉ind − 𝑉ref = 0.00100 V ± 0.00054 V  

 

The reported expanded uncertainty is based on a standard uncertainty obtained by 

combining a dominant Type B uncertainty with other smaller uncertainties. The standard 

uncertainty has been multiplied by a coverage factor 𝑘 = 1.76 which, for this particular 

combination, corresponds to a coverage probability of 95.45 %. 

 

For the purpose of further propagation, the measurement uncertainty can be imported 

into subsequent uncertainty budgets in terms of: 

1. a rectangular distribution with half width of 𝑎R = 0.0005 volts, 

2. a normal distribution with a standard uncertainty 𝑢N = 0.000095 volts” 

 

 The table below demonstrates how this uncertainty might be imported into a subsequent 

uncertainty budget for the use of the voltmeter, seen in this partially completed example as the 

entries in the first two rows: 

  

 Symbol Source of uncertainty Value / V Probability distribution Divisor 𝑐𝑖 𝑢𝑖(𝑉) / V 

 ∆𝑽 
Calibration error,  

uncertainty term 1, 𝒂𝐑 
0.0005 Rectangular √3   

 
∆𝑉 

Calibration error, 

uncertainty term 2, 𝑢N 
0.000095 Normal 1   

 ⋮ Other sources relating to use… ⋮ ⋮ ⋮   

 𝑉ind Rounding of indication in use 0.0005 Rectangular √3   

 ⋮ ⋮  ⋮ ⋮   
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C.11 The use of a two-part expression such as this means that when both components are imported 

into a subsequent uncertainty budget it is possible that 𝑎 will no longer be a dominant 

component and a normal distribution can be assumed for the subsequent combined standard 

uncertainty. 

  

C.12 The same situation may be encountered with other distributions associated with Type B 

uncertainties. An example is the U-shaped distribution associated with mismatch uncertainty in RF 

and microwave systems. Similar reasoning applies here, and the suggested coverage probability 

statement can be modified accordingly. 
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C.13 If a U-shaped distribution and a normal distribution are convolved, the coverage 

factor 𝑘 for a coverage probability of 95.45 % may be obtained from the following 

table: 

 𝑢N(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

𝑢N(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

𝑢N(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

 0.00 1.41 0.50 1.77 0.95 1.93 

 0.10 1.47 0.55 1.80 1.00 1.93 

 0.15 1.51 0.60 1.82 1.10 1.95 

 0.20 1.55 0.65 1.84 1.20 1.96 

 0.25 1.60 0.70 1.86 1.40 1.97 

 0.30 1.64 0.75 1.88 1.80 1.99 

 0.35 1.67 0.80 1.89 2.00 1.99 

 0.40 1.71 0.85 1.90 2.50 2.00 

 0.45 1.74 0.90 1.92 ∞ 2.00 

  

C.14 If a U-shaped distribution and a rectangular distribution are convolved, the 

coverage factor 𝑘 for a coverage probability of 95.45 % may be obtained from the 

following table: 

 𝑢R(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

𝑢R(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

𝑢R(𝑦)

𝑢U−shape(𝑦)
 𝑘95.45% 

 0.00 1.41 0.45 1.75 3.0 1.80 

 0.10 1.48 0.50 1.78 4.0 1.75 

 0.15 1.53 0.60 1.82 5.0 1.72 

 0.20 1.57 0.70 1.86 6.0 1.70 

 0.25 1.62 0.80 1.88 7.5 1.68 

 0.30 1.66 0.90 1.89 10 1.66 

 0.35 1.69 1.0 1.90 20 1.65 

 0.40 1.73 2.0 1.86 ∞ 1.65 

  

C.15 If two distributions of identical form, either rectangular or U-shaped, are 

convolved, the coverage factor 𝑘 for a coverage probability of 95.45 % may be 

obtained from the following table: 

 𝑢smaller(𝑦)

𝑢larger(𝑦)
 

𝑘 for stated ratio 

2 Rectangular Distributions 

𝑘 for stated ratio 

2 U-shaped Distributions 

 0.00 1.65 1.41 

 0.05 1.65 1.44 

 0.10 1.66 1.49 

 0.15 1.69 1.53 

 0.20 1.71 1.58 

 0.25 1.74 1.62 

 0.30 1.77 1.66 

 0.35 1.79 1.69 

 0.40 1.82 1.72 

 0.45 1.84 1.75 

 0.50 1.86 1.77 

 0.60 1.89 1.81 

 0.70 1.91 1.83 

 0.80 1.92 1.85 

 0.90 1.93 1.86 

 1.00 1.93 1.86 

 

C.16 Coverage factors for various other coverage probabilities are shown graphically 

on the following pages. 
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Coverage factors for the combination of normal and rectangular PDFs at several different coverage probabilities 

for different uncertainty ratio:  𝑟 =
𝑢N(𝑦)

𝑢R(𝑦)
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Coverage factors for the combination of normal and U-shaped PDFs at several different coverage probabilities 

for different uncertainty ratio:  𝑟 =
𝑢N(𝑦)

𝑢U−shape(𝑦)
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Appendix D Measurement Equations 

  

D.1 Establishing a Measurement Equation 

  

D.1.1 A measurement model describes the relationship between an output quantity 𝑌 and input 

quantities 𝑋𝑖.  

  

 The ‘bottom-up’ approach of the GUM [1] law of propagation of uncertainties, as covered in 

M3003, requires this to be a functional relationship, 𝑌 = 𝑓(𝑋1, … , 𝑋𝑁), which also relates the 

estimates of the input quantities 𝑥𝑖 to the estimate of the output, 𝑦 = 𝑓(𝑥1, … , 𝑥𝑁). This is referred 

to in this guide as a measurement equation. 

  

 A common approach to establishing a measurement equation [3] involves first defining a ‘basic 

model’ which relates the output to the ‘physical’ input quantities. For example, this might be an 

equation such as 𝑝 = 𝜌𝑔ℎ, or 𝑄 =
𝜋(𝑃1−𝑃2)𝑟4

𝜂𝐿
, or it might be an equation defining a measurement 

error ∆𝐼 = 𝐼obs − 𝐼ref 

  

 The equation is then extended by the addition of ‘metrological’ terms representing possible 

quantities that are not already part of the basic equation. These usually correspond to error 

quantities for which an exact value is unknown. The best estimate of their value (in additive 

terms) is zero, however each has a finite uncertainty. 

  

D.1.2 For example, suppose that the voltage output of a transducer (the measurand) is directly 

measured using a calibrated meter. A basic model could be written as 

  

 𝑉 = 𝑉ave + ∆𝑉cal  

 

 where  

𝑉 is the estimate of the voltage output, 

𝑉ave is the average of 𝑛 observations 𝑉𝑗=1 to 𝑛 (obtained under repeatability conditions of 

measurement), 

∆𝑉cal is an additive correction to the observed values, established from calibration of the 

meter. 

  

 The estimate 𝑉 is further influenced by other factors, each of which corresponds to a poorly 

known or unknowable measurement error δ𝑉𝑖 (each with a best estimate of zero value, but finite 

uncertainty).   

The measurement equation is therefore extended to account for these ‘metrological terms’ e.g., 

  

 𝑉 = 𝑉ave + ∆𝑉cal + δ𝑉res + δ𝑉drift + δ𝑉T  

  

 where say 

δ𝑉res is the error due to finite resolution of the observed values 𝑉𝑗  

δ𝑉drift is the error due to drift in the correction ∆𝑉cal since the meter was last calibrated 

δ𝑉T is the error due to possible temperature effects 

  

D1.3 There is no single standard or ‘correct’ way to construct a measurement model. The process is 

dictated by the nature of the information available and by the knowledge of the person 

performing the evaluation, nevertheless all valid approaches should lead to a similar result  
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 Similarly, there is no universally accepted standard for the choice of symbols to represent 

different quantities in a measurement equation. Choices should be made primarily to ensure 

clarity of meaning. 

  

 However, a useful convention is to use a δ symbol to represent any term whose best estimated 

value is zero and to use a ∆ symbol to represent a difference, a measurement error or 

correction. 

  

  

D.1.4 In some cases, the measurement equation can be written as a pure product of terms (i.e., the 

output quantity is obtained from only the multiplication or division of the input quantities) 

  

 𝑦 = 𝑐𝑥1
𝑝1𝑥2

𝑝2 … 𝑥𝑁
𝑝𝑁 (7) 

  

 where the exponents 𝑝𝑖 are known positive or negative numbers 

  

 For example, 

  

 𝑄 = 𝑄ave ×  𝑓cal × 𝑓res × 𝑓drift × 𝑓T 

  

 where say 

𝑓
cal

 is a multiplicative correction established from calibration of the meter 

𝑓
res

 is a factor representing error due to finite resolution of the observed values 𝑄𝑗.  

𝑓
drift

 is a factor representing error due to drift in the correction 𝑓
cal

 since the meter was last 

calibrated 

𝑓
T
 is a factor representing error due to possible temperature effects 

  

 If the multiplicative factor is poorly known or unknowable, the best estimate of its value is one, 

analogous to the value of zero attributed to poorly known or unknowable values in the additive 

case. 

  

D1.4.1 In this special case the uncertainty evaluation can be performed in terms of relative values (e.g., in 

% terms, or in parts per million) and the relative standard uncertainty will then be given by,  

  

 
𝑢𝑐(𝑦)

|𝑦|
= √∑ (

𝑝𝑖𝑢(𝑥𝑖)

𝑥𝑖

)

2𝑁

𝑖=1

 (8) 

  

 Some examples are given below 

  

 

𝑃 = 𝑓(𝐼, 𝑉) = 𝐼𝑉,    
𝑢(𝑃)

|𝑃|
= √(

𝑢(𝐼)

𝐼
)

2

+ (
𝑢(𝑉)

𝑉
)

2

 

  

𝐸 = 𝑓(𝑚, 𝑣) =
1

2
𝑚𝑣2,    

𝑢(𝐸)

|𝐸|
= √(

𝑢(𝑚)

𝑚
)

2

+ (
2. 𝑢(𝑣)

𝑣
)

2

 

  

𝑉 = 𝑓(𝑃, 𝑍) = (𝑃𝑍)
1
2,    

𝑢(𝑉)

|𝑉|
= √(

𝑢(𝑃)

2𝑃
)

2

+ (
𝑢(𝑍)

2𝑍
)

2
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 Use of relative uncertainties can often simplify the calculations and is particularly helpful when the 

input quantities and the uncertainties are already available in relative terms.  

  

 Equation (8) should not be used when the functional relationship includes any addition or 

subtraction of quantities. 

  

  

D.1.5 More generally there will be both additive and multiplicative terms in the measurement equation. 

For example, a measurement model might be written as: 

  

 𝑄 = (𝑄ave × 𝑓cal) + δ𝑄res + δ𝑄drift + δ𝑄T 

  

 where say 

𝑄ave is the average of 𝑛 observations 𝑄𝑗=1 to 𝑛 (obtained under repeatability conditions of 

measurement) 

𝑓
cal

 is a multiplicative correction established from calibration of the meter 

δ𝑄res is the error due to finite resolution of the observed values 𝑄𝑗  

δ𝑄drift is the error due to drift in the correction 𝑓
cal

 since the meter was last calibrated 

δ𝑄T is the error due to possible temperature effects 

  

D.1.6 In all cases, to evaluate the measurement uncertainty, the contribution associated with each 

‘input’ quantity in the measurement equation must be considered. For uncertainty budgets that 

are represented in tabular format this will usually involve creating a separate line for each term 

  

D.1.7 In situations where a suitable measurement equation cannot readily be established a ‘top-down’ 

approach is often adopted, resulting in a form of statistical model for the measurement. This 

approach is not covered in M3003. The reader is referred to other guidance documents such as 

EURACHEM/CITAG Guide CG4 [10] and ISO 21748 [8] for further information. 

  

D.1.8 More detailed guidance on the development of measurement models of all types can be found in 

JCGM GUM-6 [3].  

  

  

  

D.2 Measurement repeatability in measurement equations 

  

D.2.1 Measurement repeatability can be incorporated into a model in several different ways. The 

choice will largely depend on how its value is to be estimated. 

  

D.2.2 For example, the measurement equation   

  

 𝑉 = 𝑉ave + ∆𝑉cal + δ𝑉res + δ𝑉drift + δ𝑉T  

  

 might associate the measurement repeatability with the quantity 𝑉ave .  

  

 If the budget is presented in a table, it might appear as shown in the example below: 
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 Source of 

uncertainty 

Quantity 

𝑋𝑖  

Estimate 

𝑥𝑖  

/volt 

Uncertainty 

/volt 

PDF Divisor 𝑢(𝑥𝑖) 𝑐i 𝑢𝑖(𝑉) 

/volt 

Repeatability 𝑉ave 100.001 0.0051      

Calibration  ∆𝑉cal 0.001 0.0035      

Resolution δ𝑉res 0  0.00005      

Calibration drift δ𝑉drift 0  0.0001      

Thermal effects δ𝑉T 0  0.00012      
 

 

  

D.2.3 Alternatively, an additional error term, say δ𝑉rep might be used. 

  

 𝑉 = 𝑉ave + ∆𝑉cal + δ𝑉res + δ𝑉drift + δ𝑉T + δ𝑉rep 

  

 in which case 𝑉ave no longer features in the table in the example below, because all associated 

errors are taken into account by the other quantities, in effect it is treated as a constant 

 

 Source of 

uncertainty 

Quantity 

𝑋𝑖  

Estimate 

𝑥𝑖  

/volt 

Uncertainty 

/volt 

PDF Divisor 𝑢(𝑥𝑖) 𝑐i 𝑢𝑖(𝑉) 

/volt 

Repeatability δ𝑉rep 0 0.0051      

Calibration  ∆𝑉cal 0.001 0.0035      

Resolution δ𝑉res 0  0.00005      

Calibration drift δ𝑉drift 0  0.0001      

Thermal effects δ𝑉T 0  0.00012      
 

 

  

D.2.4 For a model that has several measured input quantities the repeatability can be treated as a 

separate input for each individual quantity. Such a treatment is most likely to be useful when the 

inputs are obtained separately. 

  

 For example, the outer surface area of a smooth regular cylinder can be modelled as 

  

 𝐴 = 𝜋 × 𝑑ave × ℎave 

  

 which, with extension to include metrological terms might be written as 

  

 𝐴 = 𝜋(𝑑ave + δ𝑑rep + δ𝑑cal + ⋯ )(ℎave + δℎrep + δℎcal + ⋯ ) 

  

 where terms for inputs such as drift and resolution have been omitted for the sake of clarity. 

  

 If the budget is presented in a table, it might appear as shown in the example below. 
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 Source of 

uncertainty 

Quantity 

𝑋𝑖  

Estimate 

𝑥𝑖  

Uncertainty PDF Divisor 𝑢(𝑥𝑖) 𝑐i 𝑢𝑖(𝐴) 

/m2 

Repeatability of 

diameter 
δ𝑑rep 0 m 0.0081 m      

Calibration of 

diameter gauge 
δ𝑑cal 0 m 0.00061 m      

⋮ ⋮ ⋮ ⋮      

Repeatability of 

height 
δℎrep 0 m 0.0012 m      

Calibration of 

height gauge 
δℎcal 0 m 0.00044 m      

⋮ ⋮ ⋮ ⋮      
 

Note that 𝑑ave and ℎave do not need to appear in the table if all uncertainty associated with these 

quantities is accounted for by other terms. 

  

D.2.5 Alternatively, repeatability is often evaluated and modelled in terms of the output quantity. This is 

more likely to be the case in situations where reliable individual repeatability estimates are 

difficult to obtain (as is very often the case), and repeatability is instead estimated from multiple 

realisations of the measurand (either during the measurement or during a previous repeatability 

assessment). 

  

 For example, the outer surface area of the smooth regular cylinder can be estimated from the 

average of several repeat values 

  

 

𝐴 =  
1

𝑛
 ∑ 𝐴𝑖

𝑛

𝑖=1

=  
1

𝑛
 ∑ 𝜋 × 𝑑𝑖 × ℎ𝑖

𝑛

𝑖=1

 

  

 which, with extension to include metrological terms might be written as 

  

 

𝐴 =  
1

𝑛
∑ 𝜋(𝑑𝑖 + δ𝑑cal + ⋯ )(ℎ𝑖 + δℎcal + ⋯ )

𝑛

𝑖=1

+ δ𝐴  

  

 again, terms such as drift and resolution have been omitted for the sake of clarity. 

  

 If the budget is presented in a table, it might appear as shown in the example below 

 

 Source of 

uncertainty 

Quantity 

𝑋𝑖  

Estimate 

𝑥𝑖  

Uncertainty PDF Divisor 𝑢(𝑥𝑖) 𝑐i 𝑢𝑖(𝑉) 

/m2 

Calibration of 

diameter gauge 
δ𝑑cal 0 m 0.00061 m      

Calibration of 

height gauge 
δℎcal 0 m 0.00044 m      

Repeatability δ𝐴 0 m2 0.0012 m2      

⋮ ⋮ ⋮ ⋮      
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D.3 Correlated input quantities 

  

D.3.1 The expressions for the standard uncertainty of the output given in equations (1) and (8) only apply 

when the input quantities are independent of each other, in other words, when there is no 

correlation between any of the input estimates.  

  

 It may however be the case that some input quantities are affected by a common factor which 

introduces correlation into the equation. For example, common temperature effects, or common 

measurement errors from an instrument that is used to measure several of the inputs to a process 

introduces correlation. 

  

D.3.2 Sometimes it is possible to construct the equation in such a way as to avoid correlated inputs. 

  

 For example, weights taken from the same set are usually assumed to have correlated values. 

Suppose that 3 weights 𝑚1, 𝑚2, and 𝑚3 from such a set are combined to form a load that is 

applied to a piston. The applied pressure can be written as: 

  

 
𝑃 =

(𝑚1 + 𝑚2 + 𝑚3)𝑔

𝐴
 

  

 where A is the cross sectional area over which the weight acts and g is the acceleration due to 

gravity.  

  

 This equation includes 3 correlated terms, 𝑚1, 𝑚2, and 𝑚3, so it would be incorrect to combine 

the uncertainties of all items using equation (1) 

  

 
𝑢𝑐(𝑝) = √𝑢𝑚1

2 (𝑝) + 𝑢𝑚1
2 (𝑝) + 𝑢𝑚2

2 (𝑝) + 𝑢𝑚3
2 (𝑝) + 𝑢𝑔

2(𝑝) + 𝑢𝐴
2(𝑝) (incorrect) 

  

 A common approach to this problem would be to evaluate separately the uncertainty for the total 

load, 𝑊 and incorporate this into an evaluation involving only independent terms 

  

 
𝑢𝑐(𝑝) = √𝑢𝑊

2 (𝑝) + 𝑢𝑔
2(𝑝) + 𝑢𝐴

2(𝑝)  

  

 where 𝑊 = 𝑚1 + 𝑚2 + 𝑚3 

  

 When there is full correlation between several input quantities, 𝑥𝑗, their combined standard 

uncertainty is found by summation rather than combining them using equation (1) 

  

 ∑ 𝑐𝑗𝑢(𝑥𝑗)

𝑗

 (9) 

  

 It is common practice to assume that there is full correlation between the values of weights in a 

set; therefore the uncertainty 𝑢(𝑊) is found from  

  

 𝑢(𝑊) = 𝑢(𝑚1) + 𝑢(𝑚2) + 𝑢(𝑚3) 

  

D.3.3 In cases where measurement errors combine so as to increase uncertainty, as in the above 

example, this is referred to as positive correlation. In other cases, the effects of correlated input 

quantities may serve to reduce the combined uncertainty, such as when an instrument is used as a 

comparator between a standard and an unknown - this is referred to as negative correlation. 
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D.3.4 A more detailed discussion of correlation is beyond the scope of M3003. The GUM (Annex F.1.2) 

should be consulted for a more detailed description of approaches for dealing with correlation.  

  
 NOTE: a further example of the treatment of correlated contributions can be found in paragraph K6.4. 
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Appendix E Some Sources of Error and Uncertainty in Electrical Calibrations 

  

 The following is a description of the more common sources of systematic error and uncertainty 

(after correction) in electrical calibration work, with brief comments about their nature. Further, 

more detailed, advice is given in specialised technical publications and manufacturers’ application 

notes, as well as other sources.  

  

E.1 Imported uncertainty 

  

E.1.1 The uncertainties assigned to the values on a calibration certificate for the calibration of an 

instrument, whether measuring equipment or a reference standard, are all contributors to the 

uncertainty budget.  

  

E.2 Secular stability 

  

E.2.1 The performance of all instruments, and the values of reference standards, must be expected to 

change to some extent with the passage of time. Passive devices such as standard resistors or 

high-grade RF and microwave attenuators may be expected to drift slowly with time. An estimate 

of such a drift has to be assessed on the basis of values obtained from previous calibrations. It 

cannot be assumed that a drift will be linear. Data can be assimilated readily if displayed in a 

graphical form. A curve fitting procedure that gives a progressively greater weight to each of the 

more recent calibrations can be used to allow the most probable value at the time of use to be 

assessed. The degree of complexity in curve fitting is a matter of judgement; in some cases, 

drawing a smooth curve through the chosen data points by hand can be quite satisfactory. 

Whenever a new calibration is obtained the drift characteristic will need re-assessment. The 

corrections that are applied for drift are subject to uncertainty based on the scatter of data points 

about the drift characteristic. The magnitude of the drift and the random instability of an 

instrument, and the accuracy required will determine the calibration interval. 

  

E.2.2 With complex electronic equipment it is not always possible to follow this procedure as changes in 

performance can be expected to be more random in nature over relatively long periods. Checks 

against passive standards can establish whether conformity to specification is being maintained or 

whether a calibration with subsequent equipment adjustment is needed. The manufacturer’s 

specification can be a good starting point for assigning the uncertainty due to instrument drift but 

should be confirmed by analysis of quality control and calibration data. 

  

E.3 Environmental conditions 

  

E.3.1 The laboratory measurement environment can be one of the most important considerations when 
performing electrical calibrations. Ambient temperature is often the most important influence and 
information on the temperature coefficient of, for example, resistance standards has to be sought 
or determined. Variations in relative humidity can also affect the values of unsealed components. 
The influence of barometric pressure on certain electrical measurement standards can also be 
significant. At RF and microwave frequencies, ambient temperature can affect the performance of, 
for example, attenuators, impedance standards that depend on mechanical dimensions for their 
values and other precision components. Devices that incorporate thermal sensing, such as power 
sensors, can be affected by rapid temperature changes that can be introduced by handling or 
exposure to sunlight or other sources of heat. 

  

E.3.2 It is also necessary to be aware of the possible effects of electrical operating conditions, such as 

power dissipation, harmonic distortion, or level of applied voltage being different when a device is 

in use from when it was calibrated. Resistance standards, resistive voltage dividers and 

attenuators at any frequency are examples of devices being affected by self-heating and/or applied 

voltage. It should also be ensured that all equipment is operating within the manufacturer's stated 

range of supply voltages. 
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E.3.3 The effects of harmonics and noise on ac calibration signals may have an influence on the 

apparent value of these signals. Similarly, the effects of any common-mode signals present in a 

measurement system may have to be accounted for. 

  

E.4 Interpolation of calibration data 

  

E.4.1 When an instrument with a broad range of measurement capabilities is calibrated, there are 

practical and economic factors that limit the number of calibration points. Consequently, the value 

of the quantity to be measured and/or its frequency may be different from any of the calibration 

points. When the value of the quantity lies between two calibration values, consideration needs to 

be given to systematic errors that arise from, for example, scale non-linearity. 

  

E.4.2 If the measurement frequency falls between two calibration frequencies, it will also be necessary to 

assess the additional uncertainty due to interpolation that this can introduce. One can only proceed 

with confidence if: 

 

(a) a theory of instrument operation is known from which one can predict a frequency characteristic, or 

there is additional frequency calibration data from other models of the same instrument, 

  

and wherever reasonable, 

 

(b) the performance of the actual instrument being used has been explored with a swept frequency 

measurement system to verify the absence of resonance effects or aberrations due to 

manufacturing or other performance limitations. 

  

E.5 Resolution 

  

E.5.1 The limit to the ability of an instrument to indicate small changes in the quantity being measured, 

referred to as resolution or “digital rounding error”, is treated as a systematic component of 

uncertainty. 

  

E.5.2 Many instruments with a digital display use an analogue-to digital converter (ADC) to convert the 

analogue signal under investigation into a form that can be displayed in terms of numeric digits. 

The last displayed digit will be a rounded representation of the underlying analogue signal. The 

error introduced by this process will be from -0.5 digit (else the last digit would be one lower) to 

+0.5 digit (else the last digit would be one higher). A quantisation error of ±0.5 digit is therefore 

present. As there is no way of knowing where within this range the underlying value is, the 

resulting error is assumed to be zero with limits of ±0.5 digit. 

  

E.5.3 This “digital rounding error” of ±0.5 digit may not apply in all instances and an understanding of 

instrument operation is needed if the assigned uncertainty is to be realistic. For example, a 

direct-gating frequency counter has a digital rounding error of ±1 digit, due to the random 

relationship between the signal being measured and the internal clock. Some instruments may 

also display hysteresis that, although not necessarily a property of the display itself, may result 

in further uncertainties amounting to several digits. 

  

E.5.4 In an analogue instrument the effect of resolution is determined by the practical ability to read the 

position of a pointer on a scale. In either case, the last digit actually recorded will always be subject 

to an uncertainty of at least ±0.5 digit. The presence of electrical noise causing fluctuations in 

instrument readings will commonly determine the usable resolution, however it is possible to make 

a good estimate of the mean position of a fluctuating pointer by eye. 

  

E.6 Apparatus layout 
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E.6.1 The physical layout of one item of equipment with respect to another and the relationship of these 

items to the earth plane can be important in some measurements. Thus a different arrangement 

between calibration and subsequent use of an instrument may be the source of systematic errors. 

The main effects are leakage currents to earth, interference loop currents, and electromagnetic 

leakage fields. In inductance measurements it is necessary to define connecting lead configuration 

and be conscious of the possible effects of an earth plane or adjacent ferromagnetic material. The 

effect of mutual heating between apparatus may also need to be considered. 

  

E.7 Thermoelectric voltages 

  

E.7.1 If an electrical conductor passes through a temperature gradient, then a potential difference will be 

generated across that gradient. This is known as the Seebeck effect and these unwanted, parasitic 

voltages can cause errors in some measurement systems – in particular, where small dc voltages 

are being measured. 

  

E.7.2 They can be minimised by design of connections that are thermally symmetrical, so that the 

Seebeck voltage in one lead is cancelled by an identical and opposite voltage in the other. In 

some situations, e.g., ac/dc transfer measurements, the polarity of the dc supply is reversed, and 

an arithmetic mean is taken of two sets of dc measurements. 

  

E.7.3 Generally, an allowance has to be made as a Type B component of uncertainty for the presence of 

thermal EMFs. 

  

E.8 Loading and cable impedance 

  

E.8.1 The finite input impedance of voltmeters, oscilloscopes and other voltage sensing instruments may 

so load the circuit to which they are connected as to cause significant systematic errors. 

Corrections may be possible if impedances are known. In particular, it should be noted that some 

multi-function calibrators can exhibit a slightly inductive output impedance. This means that when a 

capacitive load is applied, the resulting resonance may cause the output voltage to increase with 

respect to its open-circuit value. 

  

E.8.2 The impedance and finite electrical length of connecting leads or cables may also result in 

systematic errors in voltage measurements at any frequency. The use of four-terminal connections 

minimises such errors in some dc and ac measurements. 

  

E.8.3 For capacitance measurements, the inductive properties of the connecting leads may be 

important, particularly at higher values of capacitance and/or frequency. Similarly, for inductance 

measurements the capacitance between connecting leads may be important. 

  

E9 RF mismatch errors and uncertainty 

  

E.9.1 At RF and microwave frequencies the mismatch of components to the characteristic impedance of 

the measurement system transmission line can be one of the most important sources of error and 

of the systematic component of uncertainty in power and attenuation measurements. This is 

because the phases of voltage reflection coefficients are not usually known and hence corrections 

cannot be applied. 

  

E.9.2 In a power measurement system, the power, 𝑃0, that would be absorbed in a load equal to the 

characteristic impedance of the transmission line has been shown (by Harris and Warner [17]) to 

be related to the actual power, 𝑃𝐿, absorbed in a wattmeter terminating the line by the equation 

  

 

 
𝑃0 =

𝑃𝐿

1 − |Γ𝐿|2
(1 − 2|Γ𝐺||Γ𝐿| cos 𝜙 + |Γ𝐺|2|Γ𝐿|2) E1 
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 where 𝜙 is the relative phase of the generator and load voltage reflection coefficients Γ𝐺  and Γ𝐿. 

When Γ𝐺  and Γ𝐿 are small, this becomes 

  

 
𝑃0 =

𝑃𝐿

1 − |Γ𝐿|2
(1 − 2|Γ𝐺||Γ𝐿| cos 𝜙) E2 

  

E.9.3 This expression for absorbed power can have limits: 

   

 
𝑃0(limits) =

𝑃𝐿

1 − |Γ𝐿|2
(1 ± 2|Γ𝐺||Γ𝐿|) E3 

  

E.9.4 The calculable mismatch error is (1 − |Γ𝐿|2) and is accounted for in the calibration factor, while 

the limits of mismatch uncertainty are (±2|Γ𝐺||Γ𝐿|). Because a cosine function characterises the 

probability distribution for the uncertainty, Harris and Warner show that the distribution is U-

shaped with a standard deviation given by 

  

 
𝑢(mismatch) =

2|Γ𝐺||Γ𝐿|

√2
= 1.414 |Γ𝐺||Γ𝐿|  E4 

  

E.9.5 When a measurement is made of the attenuation of a two-port component inserted between a 

generator and load that are not perfectly matched to the transmission line, Harris and Warner have 

shown that the standard deviation of mismatch, 𝑀, expressed in dB is approximated by 

  

 
𝑀 =

8.686

√2
[𝑀𝐺 + 𝑀𝐿 + 𝑀𝐺𝐿]0.5 E5 

  

 where  

  

 𝑀𝐺 = |Γ𝐺|2 (|𝑠11𝑎|2 + |𝑠11𝑏|2) 

  

 𝑀𝐿 = |Γ𝐿|2 (|𝑠22𝑎|2 + |𝑠22𝑏|2) 

  

 𝑀𝐺𝐿 = |Γ𝐺|2|Γ𝐿|2 (|𝑠21𝑎|4 + |𝑠21𝑏|4) 

  

 and Γ𝐺  and Γ𝐿 are the source and load voltage reflection coefficients respectively and 𝑠11, 𝑠22, 𝑠21 

are the scattering coefficients of the two-port component with the suffix 𝑎 referring to the starting 

value of the attenuator and 𝑏 referring to the finishing value of the attenuator. Harris and Warner 

concluded that the distribution for 𝑀 would approximate to that of a normal distribution due to the 

combination of its component distributions. 

  

E.9.6 The values of Γ𝐺  and Γ𝐿 used in equations E(4) and E(5) and the scattering coefficients used in 

equation E(5) will themselves be subject to uncertainty because they are derived from 

measurements. This uncertainty has to be considered when calculating the mismatch uncertainty 

and it is recommended that this is done by adding it in quadrature with the measured or derived 

value of the reflection coefficient; for example, if the measured value of Γ𝐿 is 0.03 ± 0.02 then the 

value of Γ𝐿 that should be used to calculate the mismatch uncertainty is √0.032 + 0.022 i.e. 0.036. 
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E.10 Directivity 

  

E.10.1 When making voltage reflection coefficient (VRC) measurements at rf and microwave frequencies, 

the finite directivity of the bridge or reflectometer gives rise to an uncertainty in the measured value 

of the VRC, if only the magnitude and not the phase of the directivity component is known. The 

uncertainty will be equal to the directivity, expressed in linear terms, e.g., a directivity of 30 dB is 

equivalent to an uncertainty of 0.0316 VRC. 

  

E.10.2 As with E9.6 above it is recommended that the uncertainty in the measurement of directivity is 

taken into account by adding the measured value in quadrature with the uncertainty, in linear 

quantities; for example, if the measured directivity of a bridge is 36 dB (0.016) and has an 

uncertainty of +8 dB -4 dB (±0.01) then the directivity to be used is 

√0.0162 + 0.012 = 0.019, (i.e. 34.4 dB). 

  

E.11 Test port match 

  

E.11.1 The test port match of a bridge or reflectometer used for reflection coefficient measurements will 

give rise to an error in the measured VRC due to re-reflection. The uncertainty, 𝑢(𝑇𝑃), is 

calculated from 

𝑢(𝑇𝑃) = 𝑇𝑃. |Γ𝑋|2, where 𝑇𝑃 is the test port match, expressed as a VRC, and Γ𝑋 is the measured 

reflection coefficient. When a directional coupler is used to monitor incident power in the calibration 

of a power meter it is the effective source match of the coupler that defines the value of Γ𝐺  referred 

to in E9. As with E9.6 and E10, the measured value of test port match will have an uncertainty that 

should be taken into account by using quadrature summation. 

  

E.12 RF connector repeatability 

  

 The lack of repeatability of coaxial pair insertion loss and, to a lesser extent, voltage reflection 
coefficient is a problem when calibrating devices in a coaxial line measurement system and 
subsequently using them in some other system. Repeatedly connecting and disconnecting the 
device can evaluate the repeatability of particular connector pairs in use. 
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Appendix F Some Sources of Error and Uncertainty in Mass Calibrations 

  

 This Appendix describes the more common sources of errors and uncertainties in mass 

calibration with brief comments about their nature. They may not all be significant at all levels of 

measurement, but their effect should at least be considered when estimating the overall 

uncertainty of a measurement. Further information about mass calibration and the calibration of 

weighing machines can be found in UKAS LAB 14 [13] and EURAMET CG-18 [12]. 

  

F.1 Reference weight calibration 

  

F.1.1 The uncertainties assigned to the values on a calibration certificate for the calibration of the 

reference weights are all contributors to the uncertainty budget.  

  

F.2 Secular stability of reference weights 

  

F.2.1 It is necessary to take into account the likely change in mass of the reference weights since their 

last calibration. This change can be estimated from the results of successive calibrations of the 

reference weights. If such a history is not available, then it is usual to assume that they may 

change in mass by an amount equal to their uncertainty of calibration between calibrations. The 

stability of weights can be affected by the material and quality of manufacture (e.g., ill-fitting screw 

knobs), surface finish, unstable adjustment material, physical wear and damage and atmospheric 

contamination. The figure adopted for stability will need to be reconsidered if the usage or 

environment of the weights changes. The calibration interval for reference weights will depend on 

the stability of the weights. 

  

F.3 Weighing machine/weighing process 

  

F.3.1 The performance of the weighing machine used for the calibration should be assessed to estimate 

the contribution it makes to the overall uncertainty of the weighing process. The performance 

assessment should cover those attributes of the weighing machine that are significant to the 

weighing process. For example, the length of arm error (assuming it is constant) of an equal arm 

balance need not be assessed if the weighing process only uses substitution techniques (Borda's 

method). The assessment may include some or all of the following: 

  

(a) repeatability of measurement;  

  

(b) linearity within the range used;  

  

(c) digit size/weight value per division, i.e., resolution;  

  

(d) eccentricity (off centre load), especially if groups of weights are placed on the weighing pan 

simultaneously;  

  

(e) magnetic effects (e.g., magnetic weights, or the effect of force balance motors on cast iron 

weights); 

  

(f) temperature effects, e.g., differences between the temperature of the weights and the weighing 

machine;  

  

(f) length of arm error. 
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F.4 Air buoyancy effects 

  

F.4.1 The accuracy with which air buoyancy corrections can be made depends on how well the density 

of the weights is known, and how well the air density can be determined. Some laboratories can 

determine the density of weights, but for most mass work assumed figures are used. The air 

density is usually calculated from an equation (e.g., see [13]) after measuring the air temperature, 

pressure and humidity. For the highest levels of accuracy, it may also be necessary to measure the 

carbon dioxide content of the air. The figures that follow are based upon an air density range of 

1.079 kg m-3 to 1.291 kg m-3 which can be produced by ranges of relative humidity from 30 % to 

70 %, air temperature from 10 C to 30 C and barometric pressure from 950 mbar to 1050 mbar. 

  

F.4.2 For mass comparisons a figure of ±1 part in 106 of the applied mass is typical for common weight 

materials such as stainless steel, plated brass, German silver and gunmetal. For cast iron the 

figure may be up to ±3 parts in 106 and for aluminium up to ±30 parts in 106. The uncertainty can 

be reduced if the mass comparisons are made within suitably restricted ranges of air temperature, 

pressure and humidity. If corrections are made for the buoyancy effects the uncertainty can be 

virtually eliminated, leaving just the uncertainty of the correction. 

  

F.4.3 Certain weighing machines display mass units directly from the force they experience when 

weights are applied. It is common practice to reduce the effects of buoyancy on such devices by 

the use of an auxiliary weight, known as a spanning weight, which is used to normalise the 

readings to the prevailing conditions, as well as compensating for changes in the machine itself. 

This spanning weight can be external or internal to the machine. If such machines are not spanned 

at the time of use the calibration may be subject to an increased uncertainty due to the buoyancy 

effects on the loading weights. For weighing machines that make use of stainless steel, plated 

brass, German silver or gunmetal weights this effect may be up to ±16 parts in 106. For cast iron 

weights the figure may be up to ±18 parts in 106 and for aluminium weights up to ±45 parts in 106. 

  

F.4.4 For the ambient conditions stated above the uncertainty limits due to buoyancy effects may be 

±110 parts in 106 and ±140 parts in 106 respectively for comparing water and organic solvents with 

stainless steel mass standards, and ±125 parts in 106 and ±155 parts in 106 respectively for direct 

weighing. 

  

F.4.5 Apart from air buoyancy effects, the environment in which the calibration takes place can introduce 

other uncertainties. Temperature gradients can give rise to convection currents in the balance 

case, which will affect the reading, as will draughts from air conditioning units. Rapid changes of 

temperature in the laboratory can affect the weighing process. Changes in the level of humidity in 

the laboratory can make short-term changes to the mass of weights, while low levels of humidity 

can introduce static electricity effects on some comparators. Dust contamination also introduces 

errors in calibrations. The movement of weights during the calibration causes disturbances to the 

local environment. 
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Appendix G Some Sources of Error and Uncertainty in Temperature Calibrations 

  

 The more common sources of systematic error and uncertainty in the measurement of temperature 

are described in this section. Each source may have several uncertainty components. 
  

G.1 Reference thermometer calibration 

  

G.1.1 The uncertainties assigned to the values on a calibration certificate for the calibration of the 

reference thermometer are all contributors to the uncertainty budget.  

  

G.2 Measuring instruments 

  

G.2.1 The uncertainty assigned to the calibration of any electrical or other instruments used in the 

measurements, e.g., standard resistors, measuring bridges and digital multimeters. 

  

G.3 Further influences 

  

G.3.1 Additional uncertainties in the measurement of the temperature using the reference thermometers: 

  

(a) Drift since the last calibration of the reference thermometers and any associated measuring 

instruments; 

  

(b) Resolution of reading; this may be very significant in the case of a liquid-in-glass thermometer or 

digital thermometers; 

  

(c) Instability and temperature gradients in the thermal environment, e.g., the calibration bath or 

furnace, including any contribution due to difference in immersion of the reference standard from 

that stated on its certificate of calibration; 

  

(d) When platinum resistance thermometers are used as reference standards any contribution to the 

uncertainty due to self-heating effects should be considered. This will mainly apply if the measuring 

current is different from that used in the original calibration and/or the conditions of measurement 

e.g., `in air' or in stirred liquid. 

  

G.4 Contributions associated with the thermometer to be calibrated 

  

G.4.1 These may include factors associated with electrical indicators as well as some of the further 

influences already mentioned. When partial immersion liquid-in-glass thermometers are to be 

calibrated an additional uncertainty contribution to account for effects arising from differences in 

depth of immersion should be included even when the emergent column temperature is measured. 

  

G.4.2 When thermocouples are being calibrated any uncertainty introduced by compensating leads and 

reference junctions should be taken into account. Similarly, any thermal EMFs introduced by 

switches or scanner units should be investigated. Unknown errors arising from inhomogeneity of 

the thermocouple being calibrated can give rise to significant uncertainties. Ideally this should be 

evaluated at the time of calibration, possibly by varying the immersion depth of the thermocouple 

in an isothermal enclosure. For many calibrations, however, this will not be practical. In such 

cases, a figure of 20 % of the maximum permissible error for the particular thermocouple type is 

considered reasonable. 
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G.5 Mathematical interpretation 

  

G.5.1 Uncertainty arising from mathematical interpretation, e.g. in applying scale corrections or 

deviations from a reference table, or in curve-fitting to allow for scale non-linearity, should be 

assessed. 
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Appendix H Some Sources of Error and Uncertainty in Dimensional Calibrations 

  

 The more common sources of systematic error and uncertainty in dimensional measurements are 

described in this section. 
  

H.1 Reference standards and Instrumentation 

  

H.1.1 The uncertainties assigned to the reference standards and those for the measuring instruments 

used to make the measurements. 

  

H.2 Secular stability of reference standards and instrumentation 

  

H.2.1 The changes that occur over time must be taken into account, usually by reference to the 

calibration history of the equipment. This is particularly important when the equipment may be 

exposed to physical wear as part of normal operation. 

  

H.3 Temperature effects 

  

H.3.1 The uncertainties associated with differences in temperature between the gauge being calibrated 

and the reference standards and measuring instruments used should be accounted for. These will 

be most significant over the longer lengths and in cases involving dissimilar materials. Whilst it may 

be possible to make corrections for temperature effects there will be residual uncertainties resulting 

from uncertainty in the values used for the coefficients of expansion and the calibration of the 

measuring thermometer. 

  

H.4 Elastic compression 

  

H.4.1 These are uncertainties associated with differences in elastic compression between the materials 

from which the gauge being calibrated and the reference standards were manufactured. They are 

likely to be most significant in the more precise calibrations and in cases involving dissimilar 

materials. They will relate to the measuring force used and the nature of stylus contact with the 

gauge and reference standard. Whilst mathematical corrections can be made there will be residual 

uncertainties resulting from the uncertainty of the measuring force and in the properties of the 

materials involved. 

  

H.5 Cosine errors 

  

H.5.1 Any misalignment of the gauge being calibrated, or reference standards used, with respect to the 

axis of measurement, will introduce errors into the measurements. Such errors are often referred to 

as cosine errors and can be minimised by adjusting the attitude of the gauge with respect to the 

axis of measurement to find the relevant turning points that give the appropriate maximum or 

minimum result. Small residual errors can still result where, for instance, incorrect assumptions are 

made concerning any features used for alignment of the datums. 

  

H.6 Geometric errors 

  

H.6.1 Errors in the geometry of the gauge being calibrated, any reference standards used, or critical 

features of the measuring instruments used to make the measurements can introduce additional 

uncertainties. Typically, these will include small errors in the flatness or sphericity of stylus tips, the 

straightness, flatness, parallelism or squareness of surfaces used as datum features, and the 

roundness or taper in cylindrical gauges and reference standards. Such errors are often most 

significant in cases where perfect geometry has been wrongly assumed and where the 

measurement methods chosen do not capture, suppress or otherwise accommodate the geometric 

errors that prevail in a particular case. 
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Appendix J Some Sources of Error and Uncertainty in Pressure Calibrations using 

Dead Weight Testers 

  

 The more common sources of systematic error and uncertainty in the generation of known 

pressures, using dead weight testers (DWT), are described in this section. 
  

J.1 Reference DWT 

  

J.1.1 The uncertainties assigned to the values on a calibration certificate for the reference dead weight 

tester are all contributors to the uncertainty budget. These include the following: 

  

(a) Area uncertainty including any uncertainty in the distortion. This uncertainty will often vary with 

pressure; 

  

(b) Piston and weight carrier mass. 

  

J.2 Secular stability of the reference dead weight tester 

  

J.2.1 It is necessary to account for likely changes in the area and mass of the reference DWT since 

the last calibration. This change can be estimated from successive calibrations of the reference 

DWT. The secular stability uncertainty for the area will depend on the calibration interval and can 

be larger than the calibration uncertainty. It may also vary with pressure and should be evaluated 

over the range of use of the DWT. The variation between calibrations in the area of a DWT will 

depend on its usage, design, and material composition and is therefore a best estimate from 

actual data. Where this is not available it is recommended that a pessimistic estimate is made, 

and a short calibration interval set. 

  

J.2.2 The drift of the piston mass will be larger in oil DWTs as this will reflect the difficulties in repeat 

weighting of pistons that have been immersed in oil. These difficulties arise from incomplete 

cleaning processes and possible instability due to the evaporation of solvents. 

  

J.3 Reference DWT mass set uncertainty 

  

J.3.1 The uncertainties assigned to the values on a calibration certificate for the weights in the 

reference dead weight tester mass set are all contributors to the uncertainty budget. The 

uncertainty of the mass stack used to generate pressure should be evaluated over the range of 

the DWT. The relative uncertainty is often higher at lower pressures. 

  

J.4 Secular stability of the reference DWT mass set 

  

J.4.1 It is necessary to account for likely changes the mass set of the reference DWT since the last 

calibration. Paragraph F.2.1 addresses the subject of secular stability of reference weights. 

  

J.5 Uncertainty of local gravity determination 

  

J.5.1 The pressure generated by a DWT is directly affected by the local acceleration due to gravity, 𝑔. 

With care, this can be measured with an uncertainty of less than 1 ppm. It is possible for an 

estimate of the 𝑔 value to be obtained from a reputable geological survey organisation based on 

a grid reference; this would attract an uncertainty of around 3 ppm. It can also be calculated from 

knowledge of latitude and altitude; however, the uncertainty will be much larger - around 50 ppm 

in the UK. Some knowledge of the Bouguer anomalies is required to achieve these levels of 

uncertainty from such calculations. 
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J.6 Air buoyancy effect 

  

J.6.1 Air buoyancy affects the mass set of a DWT in the same way as described in paragraph F.4 

  

J.7 Temperature effect on DWT area 

  

J.7.1 The area on a DWT changes with temperature; its temperature coefficient of expansion being 

related to the particular materials that the piston and cylinder are made from. Consideration has 

to be given to any variation in temperature from the reference temperature when the DWT was 

calibrated, variation in temperature during a calibration and uncertainty in the determination of 

the piston temperature. 

  

J.8 Uncertainty due to head correction 

  

J.8.1 Any difference between the height of the reference DWT datum level and that of the item being 

calibrated will affect the pressure generated at that item. For pneumatic calibrations this effect is 

proportional to pressure and normally equates to about 116 ppm/m. For hydraulic calibrations 

the effect is a fixed pressure effect that will depend on the density of the fluid used, local 

acceleration due to gravity and the height difference (fluid head pressure = 𝜌𝑔ℎ). For most DWT 

oils the effect is between 8 Pa/mm and 9 Pa/mm. 

  

J.8.2 The float height position of the piston will also contribute to the head correction uncertainty. This 

effect will be related to the fall rate of the piston and the particular measurement procedure in 

use.  

  

J.9 Effects of fluid properties 

  

J.9.1 For hydraulic calibrations the effect of the fluid properties on fluid head corrections, buoyancy 

volume corrections and surface tension corrections will also need to be considered. These 

figures are usually reported on calibration certificates for DWTs. However, care must be taken to 

convert any quoted correction to the actual oil used if different from that used during the 

calibration of the reference DWT. In most circumstances the uncertainty of these influence 

quantities can be treated as negligible. 

  

J.10 Non-verticality of the DWT piston 

  

 An uncertainty arises due to the fact that the piston may not be perfectly vertical. If it were, then all 

of the force would act on the area. Any departure from vertical will reduce the force and therefore 

the generated pressure. The effect in terms of generated pressure is proportional to the cosine of 

the angle from true vertical. 

  

J.11 Uncertainties arising from the calibration process 

  

J.11.1 Any uncertainty arising from the calibration process will need to be evaluated. These could 

include the resolution and repeatability of the unit being calibrated and the effects of the 

environment on it. Uncertainties due to calculation or data fitting of the calibration results may 

also have to be considered. 
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Appendix K Examples of Application 

  

 Introduction: 

  

(a) This Appendix presents a number of example uncertainty budgets in various fields of 

measurement. The examples are not intended as preferred or mandatory requirements. They 

are presented to illustrate the principles involved in uncertainty evaluation and to show how the 

common sources of uncertainty in the various fields can be analysed in practice. They are, 

however, believed to be realistic for the particular measurements described. 
  

(b) An uncertainty budget is a statement of measurement uncertainty evaluation, of the components 

of that uncertainty, and of their calculation and combination. It should include the measurement 

model, estimates and uncertainties associated with the quantities in the measurement model, 

covariances, type of assumed probability density functions, degrees of freedom, type of 

evaluation, coverage interval, coverage probability and coverage factors. An uncertainty budget 

is not simply a summary table; it has to include all these factors. The example uncertainty 

budgets presented in this Appendix comply with this definition. 

  

(c) These examples may also be used for the purpose of software validation. If an uncertainty 

budget has been prepared using a spreadsheet, the configuration of the spreadsheet can be 

verified by entering the same values and comparing the output of the spreadsheet with the 

results shown in the examples. 

  

  

K.1 Measurement of a 10 kΩ resistor by voltage intercomparison 

  

K.1.1 A high-resolution digital voltmeter is used to measure the voltages developed across a standard 

resistor and an unknown resistor of the same nominal value as the standard when the series-

connected resistors are supplied from a constant current dc source. Both resistors are immersed in 

a temperature-controlled oil bath maintained at 20.0 °C. The value of the unknown resistor, 𝑅𝑋, is 

given by 

  

 
𝑅𝑋 = (𝑅𝑆 + δ𝑅𝐷 + 𝑅𝑇𝐶∆𝑡)

𝑉𝑋

𝑉𝑆

 

 

 where 

  

 𝑅𝑆  =  calibration value for the standard resistor, 

δ𝑅𝐷  =  drift in RS since the previous calibration, 

𝑅𝑇𝐶  =  temperature coefficient of resistance for 𝑅𝑆, 

∆𝑡  =  maximum variation in oil bath from nominal temperature, 

𝑉𝑋  =  voltage across 𝑅𝑋, 

𝑉𝑆  =  voltage across 𝑅𝑆. 
 

  

K.1.2 The calibration certificate for the standard resistor reported an uncertainty of ±0.5 ppm at a 

coverage probability of approximately 95% (𝑘 = 2). 

  

K.1.3 No correction was made for drift in the value of 𝑅𝑆 i.e., the drift is assumed to be δ𝑅𝐷 = 0. 

Records indicate that the relative drift in 𝑅𝑆 is unlikely to exceed ±0.5 ppm. 

  

K.1.4 The temperature coefficient of resistance for the standard resistor was obtained from a graph of 

temperature versus resistance. Such curves are normally parabolic in nature, however using a 

linear approximation over the small range of temperature variation encountered in the bath, a value 
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of ±2.5 ppm per ºC was assigned. This value was included in the uncertainty budget as a 

sensitivity coefficient. 

K.1.5 Records of evaluation of the oil bath characteristics showed that the maximum temperature 

deviation from the set point did not exceed ±0.1 ºC at any point within the bath. 

  

K.1.6 The same voltmeter is used to measure 𝑉𝑋 and 𝑉𝑆 and although the uncertainty contributions will 

be correlated the effect is to reduce the uncertainty and it is only necessary to consider the relative 

difference in the voltmeter readings due to linearity and resolution, which was estimated to have 

limits of ±0.2 ppm for each reading. Each of these is assigned a rectangular distribution. 

  

K.1.7 Type A evaluation: The repeatability for 𝑅𝑋 can be estimated from the repeatability of the measured 

voltage ratio, 𝑉𝑋 𝑉𝑆⁄ . Five measurements were made to record the departure from unity in the ratio  

The measured departures were: 

  

 +10.4 ppm, +10.7 ppm, +10.6 ppm, +10.3 ppm, +10.5 ppm 

  

 From equation (3), the mean departure from unity = +10.50 ppm 

  

 The repeatability standard deviation 𝑠(𝑅𝑋) is estimated from the five measured departure values. 

Applying equation (5), gives 𝑠(𝑅𝑋) = 0.158 ppm.  

  

 The reported measurement result is to be calculated using the mean of the 𝑛 = 5 

measurements. So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(𝑅𝑋) =
𝑠(𝑅𝑋)

√𝑛
=

0.158

√5
= 0.0707 ppm 

  

K.1.8 Summary table for 𝑅𝑋 = (𝑅𝑆 + δ𝑅𝐷 + 𝑅𝑇𝐶∆𝑡)
𝑉𝑋

𝑉𝑆
 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 
Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝑅𝑋) 

ppm 

𝜐𝑖 or 

𝜐eff 

𝑅𝑆 Calibration of standard resistor 0.5 ppm Normal 2 1 0.25 ∞ 

δ𝑅𝐷 Uncorrected drift since last calibration 0.5 ppm Rectangular √3 1 0.289 ∞ 

∆𝑡 Temperature effects 0.1 ºC Rectangular √3 2.5 ppm/ºC 0.144 ∞ 

𝑉𝑆 Voltmeter across RS 0.2 ppm Rectangular √3 1 0.115 ∞ 

𝑉𝑋 Voltmeter across RX 0.2 ppm Rectangular √3 1 0.115 ∞ 

𝑅𝑋 Repeatability of indication 0.071 ppm Normal 1 1 0.071 4 

𝑢c(𝑅𝑋) Combined standard uncertainty  Normal   0.445 >500 

𝑈95%(𝑅𝑋) Expanded uncertainty  
Normal 

(𝑘 = 2) 
  0.891 >500 

 

K.1.9 Reported result 

  

 The measured value of the 10 kΩ resistor at 20 ºC ± 0.1 ºC was 10 000.1050 Ω ± 0.0089 Ω 

  

 The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor 𝑘 = 2, 

providing a coverage probability of approximately 95 %.  The uncertainty evaluation has been carried out in 

accordance with UKAS requirements. 

  

 NOTE: The temperature coefficient of the resistor being calibrated is not included here, as it is an “unknown” quantity. The 

relevant temperature conditions are included in the reporting of the result. Best practice would be to estimate a value 

together with a suitable uncertainty, and to include these details with the reported results. 
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K.2 Calibration of a coaxial power sensor at a frequency of 18 GHz 

  

K.2.1 The measurement involves the calibration of an unknown power sensor against a standard 

power sensor by substitution on a stable, monitored source of defined source impedance. The 

measurement is made in terms of Calibration Factor, defined as,  

  

 
𝐾𝑋 =

Incident power at reference frequency

Incident power at calibration frequency
 

  

 for the same power sensor response. It is determined from the following: 

  

 Calibration Factor, 

  

 𝐾𝑋 = (𝐾𝑆 + δ𝐷𝑆)  ×  𝑓DC ×  𝑓M ×  𝑓REF  

  

 where 

  

 𝐾𝑆  = Calibration Factor of the standard sensor, 

 δ𝐷𝑆   = error due to drift in standard sensor since the previous calibration, 

 𝑓DC  = DC voltage output non linearity factor, 

 𝑓M  = ratio of Mismatch Losses, 

 𝑓REF  = ratio of reference power source (short-term stability of 50 MHz reference). 

  

K.2.2 Four separate measurements were made which involved disconnection and reconnection of both 

the unknown sensor and the standard sensor on a power transfer system. All measurements were 

made in terms of voltage ratios that are proportional to calibration factor. 

  

K.2.3 None of the uncertainty contributions are considered to be correlated to any significant extent. 

  

K.2.4 There will be mismatch uncertainties associated with the source/standard sensor combination 

and with the source/unknown sensor combination. These will be 200. Γ𝐺 . Γ𝑆 % and 200. Γ𝐺 . Γ𝑋 % 

respectively, where 

  

 Γ𝐺  = 0.02 at 50 MHz and 0.07 at 18 GHz, 

 Γ𝑆 = 0.02 at 50 MHz and 0.10 at 18 GHz, 

 Γ𝑋 = 0.02 at 50 MHz and 0.12 at 18 GHz. 

  

 These values include the uncertainty in the measurement of Γ as described in paragraph E.9.6. 

  

K.2.5 The standard power sensor was calibrated by an accredited laboratory 6 months before use; the 

expanded uncertainty of 1.1 % was quoted for a coverage factor 𝑘 = 2. 

  

K.2.6 The long-term stability of the standard sensor was estimated from the results of 5 annual 

calibrations. No predictable trend could be detected so drift corrections could not be made. The 

error due to secular stability was therefore assumed to be zero with limits, in this case, not greater 

than ±0.4 % per year. A value of ±0.2 % was used as the previous calibration was within 6 months. 

  

K.2.7 The instrumentation linearity uncertainty was estimated from measurements against a reference 

attenuation standard. The expanded uncertainty for 𝑘 = 2 of 0.1 % applies to ratios up to 2:1.  

  

K.2.8 Type A evaluation: The four measurements resulted in the following values of Calibration Factor: 

  

 93.45 %,   92.20 %,   93.95 %,   93.02 % 
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 From equation (3), the mean value 𝐾𝑋
̅̅̅̅ = 93.16 % 

  

 The repeatability standard deviation 𝑠(𝐾𝑋) is estimated from the four measured values. Applying 

equation (5), gives 𝑠(𝐾𝑋) = 0.7415 %. 

  

 The reported measurement result is to be calculated using the mean of 𝑛 = 4 measurements. 

So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(𝐾𝑋) =
𝑠(𝐾𝑋)

√𝑛
=

0.7415

√4
= 0.3707 %  

  

K.2.9 Summary table for 𝐾𝑋 = (𝐾𝑆 + δ𝐷𝑆)  ×  𝑓DC ×  𝑓M ×  𝑓REF 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 

% 

Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝐾𝑋) 

% 

𝜐𝑖 or 

𝜐eff 

𝐾𝑆 Calibration factor of standard 1.1 Normal 2.0 1.0 0.55 ∞ 

δ𝐷𝑆 Drift since last calibration 0.2 Rectangular √3 1.0 0.116 ∞ 

𝑓DC Instrumentation linearity 0.1 Normal 2.0 1.0 0.05 ∞ 

𝑓REF Stability of 50 MHz reference 0.2 Rectangular √3 1.0 0.116 ∞ 

 

𝑀1 

𝑀2 

𝑀3 

𝑀4 

Mismatch: 

Standard sensor at 50 MHz 

Unknown sensor at 50 MHz 

Standard sensor at 18 GHz 

Unknown sensor at 18 GHz 

 

0.08 

0.08 

1.40 

1.68 

 

U-shaped 

U-shaped 

U-shaped 

U-shaped 

 

√2 

√2 

√2 

√2 

 

1.0 

1.0 

1.0 

1.0 

 

0.06 

0.06 

0.99 

1.19 

 
∞ 

∞ 

∞ 

∞ 

𝐾𝑋 Repeatability of indication 0.37 Normal 1.0 1.0 0.37 3 

𝑢c(𝐾𝑋) Combined standard uncertainty  Normal   1.69 >500 

𝑈95%(𝐾𝑋) Expanded uncertainty  
Normal 

(𝑘 = 2) 
  3.39 >500 

 

K2.10 Reported result 

  

 The measured calibration factor at 18 GHz was 93.2 % ± 3.4 %.  

 
The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor  

𝑘 = 2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out 

in accordance with UKAS requirements. 

  
 NOTES: 

  

 1 For the measurement of calibration factor, the uncertainty in the absolute value of the 50 MHz reference source need 

not be included if the standard and unknown sensors are calibrated using the same source, within the timescale 

allowed for its short-term stability. 

 

 2 This example illustrates the significance of mismatch uncertainty in measurements at relatively high frequencies. 

 

 3 In a subsequent use of a sensor further uncertainty contributions may arise due to the use of different connector pairs.  
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K.3 Measurement of a 30 dB coaxial attenuator 

  

K.3.1 The measurement involves the calibration of a coaxial step attenuator at a frequency of 10 GHz 

using a dual channel 30 MHz IF substitution measurement system. The measurement is made in 

terms of the attenuation in dB between a matched source and load from: 

  

 𝐴𝑋 = 𝐴𝑏 − 𝐴𝑎 + δ𝐴IF + δ𝐷IF + δ𝐿M + δ𝑅D + δ𝑀 + δ𝐴L 

  

 where 

  

 𝐴𝑋  = value for the attenuator, 

 𝐴𝑏  = indicated attenuation with unknown attenuator set to zero, 

 𝐴𝑎  = indicated attenuation with unknown attenuator set to 30 dB, 

 δ𝐴𝐼𝐹  = error due to calibration of reference IF attenuator, 

 δ𝐷𝐼𝐹  = drift in reference IF attenuator since last calibration, 

 δ𝐿𝑀  = departure from linearity of mixer, 

 δ𝑅𝐷  = error due to resolution of detection system when measuring 𝐴𝑏 or 𝐴𝑎 , 

 δ𝑀  = mismatch error, 

 δ𝐴𝐿  = effect of signal leakage. 

  

K.3.2 The result is corrected for the calibrated value of the IF attenuator using the results from a 

calibration certificate, which gave an uncertainty of ±0.005 dB at a coverage probability of 95 % 

(𝑘 = 2). 

  

K.3.3 No correction is made for the drift of the IF attenuator. The limits of ±0.002 dB were estimated from 

the results of previous calibrations.  

  

K.3.4 No correction is made for mixer non-linearity. The uncertainty was estimated from a series of 

linearity measurements over the dynamic range of the system to be ±0.002 dB / 10 dB. An 

uncertainty of ±0.006 dB was therefore assigned at 30 dB. The probability distribution is assumed 

to be rectangular.  

  

K.3.5 The resolution of the detection system was estimated to cause possible rounding errors of one-half 

of one least significant recorded digit i.e., ±0.005 dB. This occurs twice - once for the 0 dB 

reference setting and again for the 30 dB measurement. Two identical rectangular distributions with 

semi-range limits of a combine to give a triangular distribution with semi-range limits of 2𝑎. The 

uncertainty due to resolution is therefore 0.01 dB with a triangular distribution. 

  

K.3.6 No correction is made for mismatch error. The mismatch uncertainty is calculated from the 

scattering coefficients using the equation given at E.9.5. The values used were as follows: 

  

 Γ𝐿 = 0.03  Γ𝐺 = 0.03 

 𝑠11𝑎 = 0.05 𝑠11𝑏 = 0.05 𝑠22𝑎 = 0.05 𝑠22𝑏 = 0.01 𝑠21𝑎 = 1 𝑠21𝑏 = 0.31  

  

K.3.7 Special experiments were performed to determine whether signal leakage had any significant 

effect on the measurement system. No effect greater than ±0.001 dB could be observed for 

attenuation values up to 70 dB. The probability distribution is assumed to be rectangular. 

  

K.3.8 Type A evaluation: Four measurements were made which involved setting the reference level with 

the step attenuator set to zero and then measuring the attenuation for the 30 dB setting. The 

results were as follows: 

  

 30.04 dB,   30.07 dB,   30.03 dB,   30.06 dB 
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 From equation (3), the mean value 𝐴𝑋
̅̅̅̅  = 30.050 dB 

  

 The repeatability standard deviation 𝑠(𝐴𝑋) is estimated from the four measured values. Applying 

equation (5), gives 𝑠(𝐴𝑋) = 0.018 dB. 

  

 The reported measurement result is to be calculated using the mean of 𝑛 = 4 measurements. 

So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(𝐴𝑋) =
𝑠(𝐴𝑋)

√𝑛
=

0.018

√4
= 0.009 dB  

  

  

K.3.9 Summary table for  𝐴𝑋 = 𝐴𝑏 − 𝐴𝑎 + δ𝐴IF + δ𝐷IF + δ𝐿M + δ𝑅D + δ𝑀 + δ𝐴L 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 

dB 

Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝐾𝑋) 

dB 

𝜐𝑖 or 

𝜐eff 

δ𝐴IF Calibration of reference attenuator 0.005 Normal 2.0 1.0 0.0025 ∞ 

δ𝐷IF Drift since last calibration 0.002 Rectangular √3 1.0 0.0012 ∞ 

δ𝐿M Mixer non-linearity 0.006 Rectangular √3 1.0 0.0035 ∞ 

δ𝑅D Resolution of indication 0.010 Triangular √6 1.0 0.0041 ∞ 

δ𝑀 Mismatch 0.022 Normal 1 1.0 0.022 ∞ 

δ𝐴L Signal leakage effects 0.001 Rectangular √3 1.0 0.0006 ∞ 

𝐴𝑋 Repeatability of indication 0.009 Normal 1.0 1.0 0.009 3 

𝑢c(𝐴𝑋) Combined standard uncertainty  Normal   0.0245 >150 

𝑈95%(𝐴𝑋) Expanded uncertainty  
Normal 

(𝑘 = 2) 
  0.0491 >150 

Note that 𝐴𝑏 and 𝐴𝑎 do not need to appear in the table as all uncertainty associated with these quantities is accounted for by 

other terms. 

  

  

K.3.10 Reported result 

  

 The measured value of the 30 dB attenuator at 10 GHz was 30.050 dB ± 0.049 dB. 

 
The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor  

𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been carried 

out in accordance with UKAS requirements. 

  
 NOTES: 

  
 1 Combination of relatively small uncertainties expressed in dB is permissible since loge(1+x) ≈ x when x is small and 

2.303log10(1+x) ≈ x. For example: 0.1 dB corresponds to a power ratio of 1.023 and 2.303log10(1+0.023) = 0.0227. 

 

Thus, relatively small uncertainties expressed in dB may be combined in the same way as those expressed as 

linear relative values, e.g., percentage. 

 

 2 For attenuation measurements, the probability distribution for RF mismatch uncertainty is dependent on the 

combination of at least three mismatch uncertainties and can be treated as having a normal distribution. For further 

details see paragraph E.9.5. 

 

 3 In a subsequent use of an attenuator further uncertainty contributions may arise due to the use of different connector 

pairs.  
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K.4 Calibration of a weight of nominal value 10 kg of OIML Class M1 

  

K.4.1 The calibration is carried out using a mass comparator whose performance characteristics have 

previously been determined, and a weight of OIML Class F2. The unknown weight is obtained 

from: 

  

 𝑊𝑋 = 𝑊𝑆 + ∆𝑊 + δ𝐷𝑆 + δ𝐼𝑑 + ∆𝐶 + ∆𝐴𝑏 + δ𝑊𝑟 

  

 where 

  

 𝑊𝑋 = value of unknown weight, 

 𝑊𝑆 = calibration of the standard weight, 

 ∆𝑊 = measured weight difference weight, 

 𝑊𝑆 = calibration of the standard weight, 

 δ𝐷𝑆 = drift of standard weight since last calibration, 

 δ𝐼𝑑 = the rounding error of the value of the least significant digit of the two indications, 

 ∆𝐶 = comparator non-linearity, 

 ∆𝐴𝑏  = correction for air buoyancy, 

 δ𝑊𝑟 = repeatability error. 

  

K.4.2 The calibration certificate for the standard mass gives an uncertainty of 30 mg at a coverage 

probability of approximately 95 % (𝑘 = 2). 

  

K.4.3 The allowed monitored drift limits for the standard mass have been set equal to the expanded 

uncertainty of its calibration, and are ±30 mg. A rectangular probability distribution has been 

assumed. 

  

K.4.4 The least significant digit 𝐼𝑑 for the mass comparator represents 10 mg. Digital rounding has 

limits of ±0.5 𝐼𝑑 for the indication of the values of both the standard and the unknown weights. 

Combining these two rectangular distributions gives a triangular distribution, with uncertainty 

limits of ±𝐼𝑑, that is ±10 mg. 

  

K.4.5 The linearity error of the comparator over the 2.5 g range permitted by the laboratory's 

procedures for the comparison was estimated from previous measurements to have limits of 

±3 mg. A rectangular probability distribution has been assumed. 

  

K.4.6 No correction is made for air buoyancy, for which limits were estimated to be ±1 ppm of nominal 

value i.e., ±10 mg. A rectangular probability distribution has been assumed. 

  

K.4.7 A previous Type A evaluation of the repeatability of the measurement process, comprising  

𝑚 = 10 comparisons between the standard and unknown weight, gave a repeatability standard 

deviation, 𝑠(δ𝑊𝑟), of 8.7 mg, with 𝜐 = (𝑚 − 1) = 10 degrees of freedom.  

  

 This evaluation replicates the normal variation in positioning single weights on the comparator, 

and therefore includes effects due to eccentricity errors. 
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K.4.8 Three results were obtained for the unknown weight using the conventional technique of 

bracketing the reading with two readings for the standard. The results were as follows: 

  

 No. Weight on pan Comparator 

reading 

Standard mean unknown - standard 

  standard + 0.01 g   

 1 unknown + 0.03 g + 0.015 g + 0.015 g 

  standard + 0.02 g   

 2 unknown + 0.04 g + 0.015 g + 0.025 g 

  standard + 0.01 g   

 3 unknown + 0.03 g + 0.010 g + 0.020 g 

  standard + 0.01 g   

   Mean difference: ∆𝑊 = + 0.020 g 

  

 From the calibration certificate, the mass of the standard is 10 000.005 g. The calibrated value of 

the unknown is therefore 𝑊𝑋 = 10 000.005 g + 0.020 g = 10 000.025 g. 

  

K.4.9 The reported measurement result is to be calculated using the mean of 𝑛 = 3 measurements 

(since three comparisons between standard and unknown are made). So, from equation (4), the 

repeatability uncertainty is 

  

 𝑢rep(δ𝑊𝑟) =
𝑠(δ𝑊𝑟)

√𝑛
=

8.7

√3
= 5.0 mg  

  

  

K.4.10 Summary table for  𝑊𝑋 = 𝑊𝑆 + ∆𝑊 + δ𝐷𝑆 + δ𝐼𝑑 + ∆𝐶 + ∆𝐴𝑏 + δ𝑊𝑟 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 

mg 

Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝑊𝑋) 

mg 

𝜐𝑖 or 

𝜐eff 

𝑊𝑆 Calibration of standard weight 30.0 Normal 2.0 1.0 15.0 ∞ 

𝐷𝑆 Drift since last calibration 30.0 Rectangular √3 1.0 17.32 ∞ 

δ𝐼𝑑 Digital rounding error, comparison 10.0 Triangular √6 1.0 4.08 ∞ 

Δ𝐶 Comparator non-linearity 3.0 Rectangular √3 1.0 1.73 ∞ 

Δ𝐴𝑏 Air buoyancy (1 ppm of nominal value) 10.0 Rectangular √3 1.0 5.77 ∞ 

δ𝑊𝑟 Repeatability of indication 5.0 Normal 1.0 1.0 5.02 9 

𝑢c(𝑊𝑋) Combined standard uncertainty  Normal   24.56 >500 

𝑈 Expanded uncertainty  
Normal 

(𝑘 = 2) 
  49.12 >500 

Note that all uncertainty associated with ∆𝑊 is accounted for by δ𝐼𝑑 and δ𝑊𝑟. 

 

K.4.11 Reported result 

  

 The measured value of the 10 kg weight was 10 000.025 g ± 0.049 g. 

 

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor  

𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation has been 

carried out in accordance with UKAS requirements. 

  

  
 NOTE: The degrees of freedom shown in the uncertainty budget are derived from a previous evaluation of repeatability, 

for which 10 readings were used (see paragraph B4). 
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K.5 Calibration of a weighing machine of 205 g capacity by 0.1 mg digit 

  

K.5.1 The calibration is carried out using weights of OIML Class E2. Checks will normally be carried out 

for linearity of response across the nominal capacity of the weighing machine, eccentricity effects 

of the positioning of weights on the load receptor, and repeatability of the machine for repeated 

weighing near full load. The span of the weighing machine has been adjusted using its internal 

weight before calibration. The following uncertainty evaluation is carried out for a near full loading 

of 200 g.  

 The machine indication errors are obtained from 

  

 ∆𝐼𝑋 = 𝐼𝑋 − 𝑊𝑆 + δ𝐷𝑆 + δ𝐼𝑑0 + δ𝐼𝑑 + ∆𝐴𝑏 + δ𝐼𝑟 

  

 where 

  

 ∆𝐼𝑋 = measurement error (‘error of indication’) for indication 𝐼𝑋, 

 𝐼𝑋 = indication (for a weight of ‘unknown’ value), 

 𝑊𝑆 = weight of the standard, 

 δ𝐷𝑆 = drift of standard since last calibration, 

 δ𝐼𝑑0 = the rounding error of the value of one digit at the zero reading, 

 δ𝐼𝑑 = the rounding error of the value of one digit of the indicated value, 

 ∆𝐴𝑏 = correction for air buoyancy, 

 δ𝐼𝑟 = repeatability error of the indication. 

  

K.5.2 The calibration certificate for the stainless steel 200 g standard mass gives an uncertainty of 

0.1 mg at a coverage probability of approximately 95 % (𝑘 = 2). 

  

K.5.3 No correction is made for drift, but the calibration interval is set so as to limit the drift to ±0.1 mg. 

The probability distribution is assumed to be rectangular. 

  

K.5.4 No correction can be made for the rounding due to the resolution of the digital display of the 

machine when zeroing. The least significant digit on the range being calibrated corresponds to 0.1 

mg and there is therefore a possible rounding error of ±0.05 mg. The probability distribution is 

assumed to be rectangular. 

  
 NOTE: It is often the case that when a weighing machine is zeroed, or tared, it may do so to a greater resolution than that 

provided by the digital readout. The above contribution may be reduced where justified, for example by determining the error 

at zero By OIML R76-1, A.4.2.3.2. 

  

K.5.5 No correction can be made for the rounding due to the resolution of the digital display of the 

machine when loaded. The least significant digit on the range being calibrated corresponds to 0.1 

mg and there is therefore a possible rounding error of ±0.05 mg. The probability distribution is 

assumed to be rectangular. 

  

K.5.6 No correction is made for air buoyancy. As the span of the machine was adjusted with its internal 

weight before calibration, the uncertainty limits were estimated to be ±1 ppm of the nominal value, 

i.e., ±0.2 mg. 

  

K.5.7 The repeatability of the machine was established from a series of 𝑚 = 10 readings (Type A 

evaluation), which gave a repeatability standard deviation, 𝑠(𝐼𝑟), of 0.05 mg, with 𝜐 = (𝑚 − 1) = 9 

degrees of freedom. 

  

K.5.8 Only one reading was taken to establish the weighing machine indication for each linearity and 

eccentricity point. For this particular calibration point the indication, 𝐼𝑋 , was 199.9999 g when the 

200 g standard mass was applied.  
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 The reported measurement result is to be this single, 𝑛 = 1 measurement. So, from equation (4), 

the repeatability uncertainty is: 

  

 𝑢rep(δ𝐼𝑟) =
𝑠(δ𝐼𝑟)

√𝑛
=

0.05

√1
= 0.05 mg. 

  

K.5.9 Summary table for  ∆𝐼𝑋 = 𝐼𝑋 − 𝑊𝑆 + δ𝐷𝑆 + δ𝐼𝑑0 + δ𝐼𝑑 + ∆𝐴𝑏 + δ𝐼𝑟 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 

mg 

Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝐼𝑋) 

mg 

𝜐𝑖 or 

𝜐eff 

𝑊𝑆 Calibration of standard weight 0.1 Normal 2.0 1.0 0.05 ∞ 

δ𝐷𝑆 Drift since last calibration 0.1 Rectangular √3 1.0 0.058 ∞ 

δ𝐼𝑑0 Digital rounding error (at zero) 0.05 Rectangular √3 1.0 0.029 ∞ 

δ𝐼𝑑 Digital rounding error (for indicated value) 0.05 Rectangular √3 1.0 0.029 ∞ 

∆𝐴𝑏 Air buoyancy (1 ppm of nominal value) 0.2 Rectangular √3 1.0 0.115 ∞ 

δ𝐼𝑟 Repeatability of indication 0.05 Normal 1.0 1.0 0.05 9 

𝑢c(𝐼𝑋) Combined standard uncertainty  Normal   0.150 >500 

𝑈 Expanded uncertainty  
Normal 

(𝑘 = 2) 
  0.300 >500 

 

K5.10 Reported result 

  

 For an applied weight of 200 g:  

the error of indication of the weighing machine was 0.10 mg ± 0.30 mg 

  

 The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements. 

  

  

K.6 Calibration of a Grade 2 gauge block of nominal length 10 mm 

  

K.6.1 The calibration was carried out using a comparator with reference to a grade K standard gauge 

block of similar material. The length of the unknown gauge block, 𝐿𝑋, was determined from 

  

 𝐿𝑋 = 𝐿𝑆 + δ𝐿𝐷 + ∆𝐿 − [𝐿(𝛼 ∆𝑡 + ∆𝛼 ∆𝑇 )] + ∆𝐷𝐶 + δ𝐶 + 𝐿𝑉(𝑋) + δ𝐿𝑟 

  

 where 

  

 𝐿𝑆 = certified length of the standard gauge block at 20ºC, 

 δ𝐿𝐷 = drift with time of certified length of standard gauge block, 

 ∆𝐿 = measured difference in length, 

 𝛼 = mean thermal expansion coefficient of the standard and unknown gauge blocks, 

 ∆𝑡 = difference in temperature between the standard and unknown gauge blocks, 

 ∆𝛼 = difference in thermal expansion coefficients of the standard and unknown gauge blocks, 

 ∆𝑇 = difference in mean temperature of gauge blocks and reference temperature of 20 ºC 

when ∆𝐿 is determined, 

 ∆𝐷𝐶 = discrimination and linearity of the comparator, 
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 δ𝐶 = difference in coefficient of compression of standard and unknown gauge blocks, 

 𝐿𝑉(𝑋) = variation in length with respect to the measuring faces of the unknown gauge block, 

 δ𝐿𝑟 = repeatability error of measurement. 

  

K.6.2 The value of 𝐿𝑆 was obtained from the calibration certificate for the standard gauge block. The 

associated uncertainty was 0.03 μm (𝑘 = 2). 

  

K.6.3 The change in value 𝐿𝐷 of the standard gauge block with time (drift) was estimated from previous 

calibrations to be zero with an uncertainty of ±15 nm. From experimental evidence and prior 

experience, the value of zero was considered the most likely, with diminishing probability that the 

value approached the limits. A triangular distribution was therefore assigned to this uncertainty 

contribution. 

  

K.6.4 The coefficient of thermal expansion applicable to each gauge block was assumed to have a 

value, 𝛼, of 11.5 μm m-1 ºC-1 with limits of ±1 μm m-1 ºC-1. Combining these two rectangular 

distributions, the difference in thermal expansion coefficient between the two blocks, is  

±2 μm m-1 ºC-1 with a triangular distribution. For 𝐿 = 10 mm this corresponds to ±20 nm ºC-1. This 

difference will have two influences: 

  

(a) The difference in temperature, δ𝑡, between the standard and unknown gauge blocks was 

estimated to be zero with limits of ±0.08 ºC, giving rise to a length uncertainty of ±1.6 nm. 

  

(b) The difference, δ𝑇, between the mean temperature of the two gauge blocks and the reference 

temperature of 20 ºC was measured to be zero and was assigned limits of ±0.2 ºC, giving rise to a 

length uncertainty of ±4 nm. 

  

 As the influence of the expansion coefficient appears directly in both of these uncertainty 

contributions they are considered to be correlated and, in accordance with paragraph D.3.2, the 

corresponding uncertainties have been added before being combined with the remaining 

contributions. This is included in the uncertainty budget as δ𝑇𝑆,𝑋. 

  

K.6.5 The error due to the discrimination and non-linearity of the comparator, ∆𝐷𝐶, was taken as zero 

with limits of ±0.05 μm, assessed from previous measurements. Similarly, the difference in elastic 

compression δ𝐶 between the standard and unknown gauge blocks was estimated to be zero with 

limits of ±0.005 μm. 

  

K.6.6 The variation in length of the unknown gauge block, 𝐿𝑉(𝑋), was considered to comprise two 

components: 

  

(a) Effect due to incorrect central alignment of the probe; assuming this misalignment was within a 

circle of radius 0.5 mm, calculations based on the specifications for grade C gauge blocks indicted 

uncertainty limits of ±17 nm. 

  

(b) Effects due to surface irregularities such as scratches or indentations; such effects have a 

detection limit of approximately ±25 nm when examined by experienced staff.  

  

 Little is known about the PDF for either effect, but it is considered very unlikely that the extremes of 

both effects will be encountered. Their combined effect is therefore modelled by a triangular PDF 

with limits of ±42 nm. 

  

K.6.7 The repeatability of the calibration process was established from previous measurements using 

gauge blocks of similar type and nominal length. This Type A evaluation, based upon 𝑚 = 11 

measurements and using equation (5), yielded a repeatability standard deviation 𝑠(δ𝐿𝑟) of 16 nm 

with 𝜐 = (𝑚 − 1) = 10 degrees of freedom. 
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K.6.8 The calibration of the unknown gauge block was established from a single measurement; however, 

as the conditions were the same as for the previous evaluation of repeatability, the standard 

uncertainty due to repeatability can be obtained from equation (4) using the previous estimate of 

repeatability standard deviation 𝑠(δ𝐿𝑟), and 𝑛 = 1 (because only one reading is made for the 

actual calibration). 

  

 So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(𝐿𝑟) =
𝑠(δ𝐿𝑟)

√𝑛
=

16

√1
= 16 nm  

  

K.6.9 The measured length of the unknown gauge block was 𝐿𝑋 = 𝐿𝑆 + ∆𝐿 = 9.999 940 mm. 

  

K.6.10 Summary table for  𝐿𝑋 = 𝐿𝑆 + δ𝐿𝐷 + ∆𝐿 − [𝐿(𝛼 ∆𝑡 + ∆𝛼 ∆𝑇 )] + ∆𝐷𝐶 + δ𝐶 + 𝐿𝑉(𝑋) + δ𝐿𝑟 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 

nm 

Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝐿𝑋) 

nm 

𝜐𝑖 or 

𝜐eff 

𝐿𝑆 Calibration of the standard gauge block 30 Normal 2.0 1.0 15.0 ∞ 

δ𝐿𝐷 Drift since last calibration 15 Triangular √6 1.0 6.1 ∞ 

∆𝐷𝐶  Comparator 50 Rectangular √3 1.0 28.9 ∞ 

δ𝐶 Difference in elastic compression 5.0 Rectangular √3 1.0 2.9 ∞ 

δ𝑇𝑆,𝑋 Temperature effects 5.6 Triangular √6 1.0 2.3 ∞ 

𝐿𝑉(𝑋) Length variation of unknown gauge block 42 Triangular √6 1.0 17.2 ∞ 

δ𝐿𝑟 Repeatability 16 Normal 1.0 1.0 16.0 10 

𝑢c(𝐿𝑋) Combined standard uncertainty  Normal   40.7 >350 

𝑈 Expanded uncertainty  
Normal 

(𝑘 = 2) 
  81.5 >350 

Note that all uncertainty associated with ∆𝐿 is accounted for by ∆𝐷𝐶  and δ𝐿𝑟. 

 

K.6.11 Reported result 

  

 The measured length of the gauge block was 9.999 940 mm ± 0.081 μm. 

 

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements. 
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K.7 Calibration of a Type N thermocouple at 1000 ºC 

  

K.7.1 A Type N thermocouple is calibrated against two reference standard Type R thermocouples in a 

horizontal furnace at a temperature of 1000 ºC. The EMFs generated by the thermocouples are 

measured using a digital microvoltmeter via a selector/reversing switch. All the thermocouples 

have their reference junctions at 0 ºC. The unknown thermocouple is connected to the reference 

point using compensating cables. 

  

K.7.2 The temperature 𝑡𝑋 of the hot junction of the unknown thermocouple is given by 

  

 
𝑡𝑋 = 𝑡𝑆 (𝑉𝑖𝑆 + δ𝑉𝑖𝑆1 + δ𝑉𝑖𝑆2 + δ𝑉𝑅 −

δ𝑡0𝑆

𝐶𝑆0

) + δ𝑡𝐷 + δ𝑡𝐹 + δ𝑡𝑟 

  

 
     ≈ 𝑡𝑆 𝑉𝑖𝑆 + 𝐶𝑆 δ𝑉𝑖𝑆1 + 𝐶𝑆 δ𝑉𝑖𝑆2 + 𝐶𝑆 δ𝑉𝑅 −

𝐶𝑆

𝐶𝑆0

δ𝑡0𝑆 + δ𝑡𝐷 + δ𝑡𝐹 + δ𝑡𝑟 

  

 The voltage 𝑉𝑋(𝑡) across the thermocouple wires with the reference junction at 0 ºC during the 

calibration is 

  

 
𝑉𝑋(𝑡) ≈ 𝑉𝑋(𝑡𝑋) +

∆𝑡

𝐶𝑋

−
δ𝑡0𝑋

𝐶𝑋0

+ δ𝑉𝑟 = 𝑉𝑖𝑋 + δ𝑉𝑖𝑋1 + δ𝑉𝑖𝑋2 + δ𝑉𝐿𝑋 + δ𝑉𝑇𝐻 + δ𝑉𝑅 +
δ𝑡

𝐶𝑋

−
δ𝑡0𝑋

𝐶𝑋0

+ δ𝑉𝑟 

  

 where 

  

 𝑡𝑆(𝑉)  = temperature of the reference thermometer in terms of voltage with the cold 

junction at 0 ºC.  The function is given in the calibration certificate, 

 𝑉𝑖𝑆, 𝑉𝑖𝑋  = indication of the microvoltmeter, 

 δ𝑉𝑖𝑆1, δ𝑉𝑖𝑋1  = voltage corrections due to the calibration of the microvoltmeter, 

 δ𝑉𝑖𝑆2, δ𝑉𝑖𝑋2  = rounding errors due to the resolution of the microvoltmeter, 

 δ𝑉𝑅  = voltage error due to contact effects of the reversing switch, 

 δ𝑡0𝑆, δ𝑡0𝑋  = temperature corrections associated with the reference junctions, 

 𝐶𝑆, 𝐶𝑋  = sensitivity coefficients of the thermocouples for voltage at the measurement 

temperature of 1000 ºC, 

 𝐶𝑆0, 𝐶𝑋0  = sensitivity coefficients of the thermocouples for voltage at the reference 

temperature of 0 ºC, 

 δ𝑡𝐷  = drift of the reference thermometers since the last calibration, 

 δ𝑡𝐹  = temperature correction due to non-uniformity of the furnace, 

 𝑡  = temperature at which the unknown thermocouple is to be calibrated, 

 ∆𝑡 = 𝑡 − 𝑡𝑋  = deviation of the temperature of the calibration point from the temperature of 

the furnace, 

 δ𝑉𝐿𝑋  = voltage error due to the compensation leads, 

 δ𝑉𝑇𝐻  = error due to inhomogeneity of the unknown thermocouple, 

 δ𝑡𝑟  = repeatability error for established reference temperatures, 

 δ𝑉𝑟  = repeatability error of voltage measurements. 

  

K.7.3 The reported result is the output EMF of the test thermocouple at the temperature of the hot 

junction. The measurement process consists of two parts - determination of the temperature of 

the furnace and determination of the EMF of the test thermocouple. The evaluation of 

uncertainty has therefore been split into two parts to reflect this situation. 
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K.7.4 The Type R reference thermocouples are supplied with calibration certificates that relate the 

temperature of their hot junctions with their cold junctions at 0 ºC to the voltage across their 

wires. The expanded uncertainty is 0.3 ºC with a coverage factor 𝑘 = 2.  

  

K.7.5 No correction is made for drift of the reference thermocouples since the last calibration but an 

uncertainty of ±0.3 ºC has been estimated from previous calibrations. A rectangular probability 

distribution has been assumed. 

 

K.7.6 The voltage sensitivity coefficients of the reference and unknown thermocouples have been 

obtained from reference tables as follows: 

  

  
Thermocouple 

Sensitivity coefficient at temperatures of  

  0 ºC 1000 ºC  

  Reference (type R) 𝑐𝑆0 = 0.189 ºC/μV 𝑐𝑆 = 0.077 ºC/μV  

  Unknown (type N) 𝑐𝑋0 = 0.038 ºC/μV 𝑐𝑋 = 0.026 ºC/μV  

  

K.7.7 The least significant digit of the microvoltmeter corresponds to a value of 1 μV. This results in 

possible rounding errors, δ𝑉𝑖𝑆2 and δ𝑉𝑖𝑋2, of ±0.5 μV for each indication. 

  

K.7.8 Corrections were made to the microvoltmeter readings by using data from its calibration 

certificate. Drift and other influences were all considered negligible, therefore only the calibration 

uncertainty of 2.0 μV (𝑘 = 2) is to be included in the uncertainty budget. 

  

K.7.9 Residual parasitic offset voltages due to the switch contacts were estimated to be zero within 

±2.0 μV. 

  

K.7.10 The temperature of the reference junction of each thermocouple is known to be 0 ºC within 

±0.1 ºC. For the 1000 ºC measurements, the sensitivity coefficient associated with the 

uncertainty in the reference junction temperature is the ratio of those at 0 ºC and 1000 ºC, i.e., 
𝑐𝑠

𝑐𝑠𝑜
= −0.407. 

  

K.7.11 The temperature gradients inside the furnace had been measured. At 1000 ºC deviations from 

non-uniformity of temperature in the region of measurement are within ±1 ºC. 

  

K.7.12 The compensation leads had been tested in the range 0 ºC to 40 ºC. Voltage differences 

between the leads and the thermocouple wires were estimated to be less than ±5 μV. 

  

K.7.13 The error due to inhomogeneity of the unknown thermocouple was determined during the 

calibration by varying the immersion depth. Corrections are not practical for this effect therefore 

the error was assumed to be zero within ±0.3 ºC. 

  

K.7.14 The sequence of measurements is as 

follows: 

   

   1 First standard thermocouple  

   2 Unknown thermocouple  

   3 Second standard thermocouple  

   4 Unknown thermocouple  

   5 First standard thermocouple  

  

 The polarity is then reversed, and the sequence is repeated. Four readings are thus obtained for 

all the thermocouples. This sequence reduces the effects of drift in the thermal source and 

parasitic thermocouple voltages. The results were as follows: 
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Thermocouple: First standard Unknown Second standard 

 

 

 

Corrected voltages: 

 

+ 10500 μV 

+ 10503 μV 

– 10503 μV 

– 10504 μV 

 

 

+ 36245 μV 

+ 36248 μV 

– 36248 μV 

– 36251 μV 

 

+ 10503 μV 

+ 10503 μV 

– 10505 μV 

– 10505 μV 

 

 
Absolute mean values: 10502.5 μV 36248 μV 10504.0 μV 

 

 
Temperature of hot junctions: 1000.4 ºC  1000.6 ºC 

 

 
Mean temperature of furnace: 1000.5 ºC 

 

K.7.15 The thermocouple output EMF is corrected for the difference between the nominal temperature of 

1000 ºC and the measured temperature of 1000.5 ºC. The reported thermocouple output is  

 𝑉𝑋 = 36248 ×
1000

1000.5
 μV = 36230 μV.  

  

K.7.16 In this example it is assumed that the procedure requires that the difference between the two 

standards must not exceed 0.3 ºC. If this is the case, then the measurement must be repeated 

and/or the reason for the difference investigated. 

  

K.7.17 From the four readings on each thermocouple, one observation of the mean voltage of each 

thermocouple was deduced. The mean voltages of the reference thermocouples are converted to 

temperature observations by means of temperature/voltage relationships given in their calibration 

certificates. These temperature values are highly correlated. By taking the mean they are combined 

into one observation of the temperature of the furnace at the location of the test thermocouple. In a 

similar way one observation of the voltage of the test thermocouple is extracted.  

  

K.7.18 In order to determine the repeatability standard deviation associated with these measurements 

Independent, Type A evaluations had been carried out on a previous occasion. In each case a 

series of 𝑚 = 10 measurements had been undertaken at the same temperature of operation. 

Using equation (5), this gave estimates of the repeatability standard deviations for the temperature 

of the furnace, 𝑠(δ𝑡𝑟) of 0.10 ºC and for the voltage of the thermocouple to be calibrated, 𝑠(δ𝑉𝑟), of 

1.6 μV.  

In each case there are 𝜐 = (𝑚 − 1) = 9 degrees of freedom 

  

 Only one calibration measurement is made, so from equation (4), the repeatability uncertainties are 

  

 𝑢rep(δ𝑡𝑟) =
𝑠(δ𝑡𝑟)

√𝑛
=

0.10

√1
= 0.10 ℃  

  

 and 

  

 𝑢rep(δ𝑉𝑟) =
𝑠(δ𝑉𝑟)

√𝑛
=

1.6

√1
= 1.6 μV  

  

 (The value of 𝑛 = 1 is used to calculate the standard uncertainty because in the normal procedure 

only one sequence of measurements is made at each temperature.) 
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K.7.19 Summary table - temperature of the furnace  

    𝑡𝑋 = 𝑡𝑆 𝑉𝑖𝑆 + 𝑐𝑆 δ𝑉𝑖𝑆1 + 𝑐𝑆 δ𝑉𝑖𝑆2 + 𝑐𝑆 δ𝑉𝑅 −
𝑐𝑆

𝑐𝑆0

δ𝑡0𝑆 + δ𝑡𝐷 + δ𝑡𝐹 + δ𝑡𝑟 

 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 
Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝑡𝑋) 

ºC 

𝜐𝑖 or 

𝜐eff 

𝑡𝑆 Calibration of standard thermocouples 0.3 ºC Normal 2.0 1.0 0.150 ∞ 

δ𝑡𝐷 Drift in standard thermocouples 0.3 ºC Rectangular √3 1.0 0.173 ∞ 

δ𝑉𝑖𝑆1 Voltmeter calibration and drift 2.0 μV Normal 2.0 0.077 0.077 ∞ 

δ𝑉𝑅 Switch contacts 2.0 μV Rectangular √3 0.077 0.089 ∞ 

δ𝑡0𝑆 Determination of reference point 0.1 ºC Rectangular √3 -0.407 -0.024 ∞ 

δ𝑡𝑟 Repeatability 0.1 ºC Normal 1.0 1.0 0.100 9 

δ𝑉𝑖𝑆2 Voltmeter resolution 0.5 μV Rectangular √3 0.077 0.022 ∞ 

δ𝑡𝐹 Furnace non-uniformity 1.0 ºC Rectangular √3 1.0 0.577 ∞ 

𝑢c(𝑡𝑋) Combined standard uncertainty  Normal   0.641 >500 

 

K.7.20 Summary table - EMF of unknown thermocouple 

𝑉𝑋(𝑡) = 𝑉𝑖𝑋 + δ𝑉𝑖𝑋1 + δ𝑉𝑖𝑋2 + δ𝑉𝐿𝑋 + δ𝑉𝑇𝐻 + δ𝑉𝑅 +
δ𝑡

𝑐𝑋

−
δ𝑡0𝑋

𝑐𝑋0

+ δ𝑉𝑟 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 
Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(𝑉) 

μV 

𝜐𝑖 or 

𝜐eff 

𝑡𝑋 Furnace temperature 0.641 ºC Normal 1.0 38.5 24.65 >500 

δ𝑉𝐿𝑋 Compensating leads 5.0 μV Rectangular √3 1.0 2.89 ∞ 

δ𝑉𝑖𝑋1 Voltmeter calibration and drift 2.0 μV Normal 2.0 1.0 1.00 ∞ 

δ𝑉𝑅 Switch contacts 2.0 μV Rectangular √3 1.0 1.15 ∞ 

δ𝑡0𝑋 Determination of reference point 0.1 ºC Rectangular √3 26.3 1.52 ∞ 

δ𝑉𝑟  Repeatability 1.6 μV Normal 1.0 1.0 1.60 9 

δ𝑉𝑖𝑋2 Voltmeter resolution 0.5 μV Rectangular √3 1.0 0.29 ∞ 

δ𝑉𝑇𝐻 Inhomogeneity of thermocouple 0.3 ºC Rectangular √3 38.5 6.66 ∞ 

𝑢c(𝑉) Combined standard uncertainty  Normal   25.9 >500 

𝑈 Expanded uncertainty  
Normal 

(𝑘 = 2) 
  51.9 >500 

 

K.7.21 Reported result 

  

 The type N thermocouple generates an EMF of 36 230 μV ± 52 μV at a temperature of 1000 C 

with its cold junction at a temperature of 0 ºC. 

 

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements. 
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K.8 Calibration of a Digital Pressure Indicator (DPI) at a nominal pressure of 2 MPa using a 

reference hydraulic dead weight tester 

  

K.8.1 The calibration pressure was generated using a dead weight tester (DWT) the performance 

characteristics of which had previously been determined. The indication was approached with 

increasing pressure to account for the existence of possible hysteresis in the DPI.  

 The measurement error for the unknown DPI is obtained from: 

  

 ∆𝐼𝑋 = 𝐼𝑋 − 𝑃𝑋 + δ𝐼𝑑 + δ∆𝑟  

  

 

∆𝐼𝑋 = 𝐼𝑋 − {
[∑ 𝑚𝐿𝑔 (1 −

𝜌𝑎

𝜌𝑚
)] + (−𝐵𝑉(𝜌𝑓 − 𝜌𝑎)𝑔) + 𝜙 × 𝐶

𝐴0(1 + 𝑎𝑝)(1 + 𝜆(𝑡 − 20))
+ (𝜌𝑓 − 𝜌𝑎)𝑔ℎ + δ𝑒𝑉} + δ𝐼𝑑 + δ∆𝑟 

  

 where 

  

 ∆𝐼𝑋 = Error in the indication of the unknown DPI, 

 𝐼𝑋 = Indication of the DPI, 

 𝑃𝑋 = Generated pressure at the reference level of the DPI, 

 𝑚𝐿 = Mass of the component parts of the load, including the piston, 

 𝜌𝑎 = Density of ambient air, 

 𝜌𝑚 = Density of the mass, 𝑚, and can be significantly different for each load component, 

 𝑔 = The value of the local acceleration due to gravity, 

 ℎ = Height different between reference levels for standard and for generated pressure, 

 𝐵𝑉 = Buoyancy volume of the reference piston – from calibration certificate, 

 𝜌𝑓 = Density of hydraulic fluid, 

 𝜙 = Surface tension coefficient of hydraulic fluid, 

 𝐶 = Circumference of reference piston, 

 𝐴0 = Effective area at zero pressure of reference piston, 

 𝑎𝑝 = Distortion coefficient of reference piston (pressure dependant term), 

 𝜆 = Temperature coefficient of piston and cylinder, 

 𝛿𝑒𝑉 = Error due to the piston not being perfectly vertical, 

 𝛿𝐼𝑑 = The rounding error corresponding to the least significant digit of the indication, 

 δ∆𝑟 = Repeatability error when measuring ∆𝐼𝑋. 

  

K.8.2 The calibration certificate for the reference DWT gives the piston area and its expanded 

uncertainty as: 

 𝐴0 = 80.6516 mm2 ± 0.0026 mm2.  

This results in a relative expanded uncertainty (𝑘 = 2) in 𝐴0 of 32.2 ppm. 

  

K.8.3 The calibration certificate for the reference DWT gives the distortion coefficient of the reference 

piston as 𝑎𝑝 = 6.0 x 10-6/MPa ± 0.5 x 10-6/MPa, where the coverage interval is defined in terms 

of (±) the expanded uncertainty (𝑘 = 2). 

  

K.8.4 The allowed drift limit in the effective area of the DWT, based on results from previous 

calibrations, has been set to ±30 ppm, to be treated as the limits of a rectangular distribution. 

  

K.8.5 Mass uncertainties 
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K.8.5.1 The mass of the piston is shown on the calibration certificate as 0.567 227 kg with an expanded 

uncertainty (𝑘 = 2) of 0.000 010 kg. 

  

 The values of the mass set, as shown on the calibration certificate for the three weights “A”, “B” 

and “C” used to generate 2 MPa are: 

  

 A = 0.255 242 kg ± 0.000 010 kg 

 B = 7.402 137 kg ± 0.000 050 kg 

 C = 8.224 784 kg ± 0.000 050 kg 

  

 where the coverage intervals are defined in terms of (±) the expanded uncertainty (𝑘 = 2)  

  

 As all calibrated mass values are likely to be strongly correlated the uncertainty for the combined 

load is found by summing the individual uncertainties. Expressed as a relative value for the 2 

MPa load this is: 

  

 
Relative expanded uncertainty in mass =

𝑈piston + 𝑈A + 𝑈B + 𝑈C

Total mass of piston + A + B + C
 

  

 
Relative expanded uncertainty in mass =

(10 + 10 + 50 + 50) mg

(0.567 227 + 0.255 242 + 7.402 137 + 8.224 784) kg
 

  

 Relative expanded uncertainty in mass = 7.3 ppm 

  

 to be treated as the semi-range of a rectangular distribution 

  

K.8.5.2 The allowed drift limit of the piston mass, based on previous calibrations, has been set to 

±0.000 015 kg. 

  

 The allowed limits to the drift of the mass set have been set to be equal to the expanded 

uncertainty of its calibration, i.e., 10 mg, 50 mg and 50 mg respectively. 

  

 Again, as all calibrated mass values are likely to be strongly correlated, the uncertainty for the 

combined load is found by summing the individual uncertainties. Expressed in relative terms the 

value is: 

  

 
Relative mass drift limit = ±

(15 + 10 + 50 + 50)mg

(0.567 227 + 0.255 242 + 7.402 137 + 8.224 784)kg
= 7.6 ppm 

  

 to be treated as the semi-range of a rectangular distribution. 

  

K.8.6 The uncertainty in the temperature of the piston is estimated to be no more than 0.5 ºC. This will 

affect the pressure generated in proportion to the temperature coefficient of the piston and 

cylinder combination. In this case a steel piston and cylinder has a temperature coefficient of 

23 ppm/ºC. This sensitivity coefficient was obtained from the calibration certificate for the DWT. 

  

K.8.7 A correction has already been made for the value of the local acceleration due to gravity. The 

correction was estimated from knowledge of the measurement location and known (Bouguer) 

anomalies. The expanded uncertainty associated with this estimate, is 3 ppm (𝑘 = 2). 

  

K.8.8 A standard air buoyancy correction has been made assuming an air density of 1.2 kg.m-3 and a 

mass density of 8000 kg.m-3. As all masses have an assumed density of 7800 kg.m-3, and 

assuming normal laboratory ambient conditions, the additional uncertainty for this approximation 

is estimated to be 13 ppm, to be treated as the semi-range of a rectangular distribution. 
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K.8.9 The uncertainty relating to fluid head effects arises from the height different between the 

reference level of the reference DWT and the datum level for generated pressure, estimated as 

+2 mm with an uncertainty of 1 mm. No correction is made; therefore, a limit value of 3 mm has 

been assigned for the uncertainty associated with fluid head effects. Assuming that the density 

of the oil used is 917 kg/m3 and the local value of g is 9.81 m.s-2, then the uncertainty associated 

with the fluid head effect is 917 x 9.81 x 0.003 = 27.0 Pa. In relative terms this corresponds to an 

uncertainty of 13.5 ppm at 2 MPa, to be treated as the semi-range of a rectangular distribution. 

  

K.8.10 The uncertainty contribution arising from the combined effects of the uncertainty in the 

knowledge of buoyancy volume, surface tension and fluid density has been estimated as 2 ppm 

based on a relative uncertainty in each of ±10 %, to be treated as the semi-range of a 

rectangular distribution. 

  

K.8.11 An uncertainty arises due to the fact that the piston may not be perfectly vertical. If it were, then all 

of the force would act on the area. Any departure from vertical will reduce the force, and therefore 

the pressure, by the cosine of the angle. In this example, it is assumed that, after levelling, the 

piston is vertical to within 0.15°. The effect in terms of generated pressure is proportional to the 

cosine of the angle from true vertical. The cosine of 0.15° is 0.999 996 6. The maximum error is 

therefore -3.4 ppm of the generated pressure. This is to be represented by a rectangular 

distribution with limits of ±3.4 ppm.  

  
 NOTE: This effect always acts in one direction, i.e., the generated pressure will always be smaller than that obtained if 

the piston were truly vertical. As this uncertainty is small compared with others in this particular calibration, it is 

convenient to treat it as bilateral. 

  

K.8.12 No correction can be made for the rounding error, δ𝐼𝑑, due to the resolution of the digital display of 

the DPI. The least significant digit on the range being calibrated of this particular DPI changes in 

steps of 200 Pa and there is therefore a possible rounding error of ±100 Pa or, in relative terms, 

±50 ppm. The probability distribution is assumed to be rectangular 

  

K.8.13 The repeatability standard deviation of the calibration process had been established from previous 

measurements using DPIs of similar type and range. This Type A evaluation, based upon 𝑚 = 10 

measurements, yields a relative standard deviation of 16 ppm, with 𝜐 = (𝑚 − 1) = 9 degrees of 

freedom. 

  

 This calibration of the unknown DPI was established from a single measurement. As the conditions 

were the same as previously, the repeatability uncertainty can be obtained using the previously 

obtained repeatability standard deviation, and 𝑛 = 1 (as only one measurement is made for the 

calibration). 

  

 So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(δ∆𝑟) =
𝑠(δ∆𝑟)

√𝑛
=

16

√1
= 16 ppm  

  

K.8.14 All uncertainties associated with the indicated value 𝐼𝑋 are accounted for by the error terms δ𝐼𝑑 

and δ∆𝑟, so no further contributions need be considered.  

  

K.8.15 The generated pressure was calculated from the mass of the piston, that of the mass set, and 

the following quantities: 

    Temperature of Piston: 21 ºC  

    Buoyancy volume of piston: 3.0 x 10-7 m3  

    Air density: 1.2 kg.m-3   

    Local gravity: 9.811812 m.s-2   

    Oil surface tension coefficient: 0.0315 N/m   
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 This results in an applied pressure of P𝑋 = 2.000 806 MPa 

 

K.8.16 Summary table for  

∆𝐼𝑋 = 𝐼𝑋 − {
[∑ 𝑚𝐿𝑔 (1 −

𝜌𝑎

𝜌𝑚
)] + (−𝐵𝑉(𝜌𝑓 − 𝜌𝑎)𝑔) + 𝜙 × 𝐶

𝐴0(1 + 𝑎𝑝)(1 + 𝜆(𝑡 − 20))
+ (𝜌𝑓 − 𝜌𝑎)𝑔ℎ + δ𝑒𝑉} + δ𝐼𝑑 + δ∆𝑟 

 

Symbol 

 

Source of uncertainty 

 

Uncertainty 
Probability 

distribution 
Divisor 𝑐𝑖 

𝑢𝑖(∆𝐼𝑋) 

ppm 

𝜐𝑖 or 

𝜐eff 

𝐴0 Calibration of DWT (area) 32.2 ppm Normal 2.0 1.0 16.25 ∞ 

𝑎𝑝 Calibration of DWT (distortion) 0.5 ppm/MPa Normal 2.0 2.0 MPa 0.500 ∞ 

𝐴0 Drift in area 30 ppm Rectangular √3 1.0 17.32 ∞ 

𝑚𝐿 Calibration of total load 7.3 ppm Normal 2 1.0 3.65 ∞ 

𝑚𝐿  Drift of total load 7.6 ppm Rectangular √3 1.0 4.38 ∞ 

𝑡 Temperature of the piston 0.5 ºC Rectangular √3 23 ppm/ºC 6.64 ∞ 

𝑔 Local gravity determination 3.0 ppm Normal 2 1.0 1.50 ∞ 

BV Air buoyancy 13 ppm Rectangular √3 1.0 7.51 ∞ 

ℎ Fluid head effects 13.5 ppm Rectangular √3 1.0 7.79 ∞ 

𝜙 Other fluid effects 2.0 ppm Rectangular √3 1.0 1.15 ∞ 

δ𝑒𝑉 Levelling effects 3.4 ppm Rectangular √3 1.0 1.96 ∞ 

δ𝐼𝑑 Digital rounding error 50 ppm Rectangular √3 1.0 28.9 ∞ 

δ∆𝑟 Repeatability  16 ppm Normal 1 1.0 16.0 9 

𝑢c(∆𝐼𝑋) Combined standard uncertainty  Normal   43.0 >350 

𝑈 Expanded uncertainty  
Normal 

(𝑘 = 2) 
  86.0 >350 

 

K.8.17 Reported result 

  

 The pressure was applied in an increasing direction until it reached a final value of 

2.000 806 MPa. The indication of the digital pressure indicator was 2.000 84 MPa. 

  

 The corresponding measurement error ∆𝐼𝑋 is 17 ppm ± 86 ppm (34 Pa  170 Pa) 

  

 The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements. 

  

 NOTES: 

 1 In this example, the uncertainty due to resolution, δ𝐼𝑑, is larger than any other contribution and is assigned a 

rectangular distribution. Nevertheless, the combined standard uncertainty is still normally distributed, due to the 

presence of the other uncertainties, even though they are of smaller magnitude. This has been verified by MCS. 

 

 2 The resolution uncertainty is based on the least significant digit of the DPI. For this particular instrument it changes 

in steps of 2 digits, therefore the uncertainty is 1 digit. 

 

 3 This uncertainty budget has been constructed in relative terms (ppm), as most of the errors that arise are 

proportional to the generated pressure and it is the convention in this particular field of measurement to express 

uncertainties in this manner. If it is required that the uncertainty is reported in absolute units, it can be calculated 

from the reported value and the relative uncertainty. In this case, the expanded uncertainty in absolute terms is 

0.000 17 MPa.  
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Appendix L Expression of Uncertainty for a Range of Values 

  

L.1 Introduction 

  

L.1.1 On occasions it is convenient to provide a statement of uncertainty that describes a range of 

values rather than a single result. 

  

L.1.2 The GUM [1] deals with expression of uncertainties for the reporting of a single value of a 

measurand, or more than one parameter derived from the same set of data. In practice many 

measuring instruments are calibrated at several points on a range and the use of an expression 

describing the uncertainty at any of these points can be desirable. 

  

L.1.3 This Appendix therefore describes the situations when this can occur, explains how it can be 

dealt with using the principles of this guide and provides an illustration of the process using a 

worked example. 

  

L.2 Principles 

  

L.2.1 When measurements are made over a range of values and the corresponding sources of 

uncertainty are examined it may be found that some are absolute in nature (i.e., they arise in a 

manner that is independent of the value of the measurand) and some are relative in nature (i.e. 

they arise in a manner that makes them proportional to the value of the measurand). 

  

L.2.2 It is possible, of course, to follow this guide and to calculate a unique value for the 

measurement uncertainty at each tabulated point over the range. This is often the least 

ambiguous approach and arguably provides the clearest form of reporting. 

  

L.2.3 However, for many users there are circumstances where it is useful to be able to separately 

identify the absolute and relative constituents of the measurement uncertainty. For example, so 

that these can be imported into a subsequent uncertainty evaluation as separate inputs.  

The user can achieve this by performing a mathematical fit to tabulated values, if these have 

been provided. 

  

L.2.4 The process for evaluating the measurement uncertainty describing a range of values is 

identical to that for single values except that the absolute and relative input quantities are 

separated, and in effect, an uncertainty evaluation is carried out for each type in the manner 

already described in this guide. 

  

L.2.5 Traditionally the measurement uncertainty has sometimes (incorrectly) then been expressed as 

a ‘linear’ combination of the relative and absolute components 

 𝑈 = 𝑈rel + 𝑈abs 

 but this linear addition of quantities is not in accordance with the principles embodied in the 

GUM (unless there happens to be a very high degree of correlation between the absolute and 

relative terms - which is not usually the case).  

  

 Instead, the measurement uncertainty should be expressed as a quadrature sum (root of the 

sum of the squares of the components). This can either be in a mathematical form or as an 

equivalent statement in words.  

  

 

  



The Expression of Uncertainty and Confidence in Measurement 

 

w: www.ukas.com  |  t: +44(0)1784 429000  |  e: info@ukas.com   

© United Kingdom Accreditation Service. UKAS copyright exists on all UKAS publications. 

M3003 Edition 5  Page 78 of 90 

L.3 Example of uncertainty evaluation for a range of values 

  

L.3.1 In this example a 6½ - digit electronic multimeter (DMM) is calibrated on its 1 V dc range using a 

multi-function calibrator. 

  

L.3.2 The calibrations were carried out in both polarities at 0.1 V increments from zero to 1 V. Only 

one measurement was carried out at each point and therefore reliance was placed on a previous 

evaluation of repeatability using similar multimeters. 

  

L.3.3 No corrections were made for known errors of the calibrator as these were identified as being 

small relative to other sources of uncertainty. The uncorrected errors are assumed to be zero 

with an uncertainty obtained by analysis of information obtained from the calibration certificate 

for the calibrator. 

  

L.3.4 The measurement error ∆𝐼DMM associated with indication 𝐼DMM of the multimeter under test, can 

be described as follows: 

  

 ∆𝐼DMM = 𝐼DMM − 𝑉REF + δ𝐼RES + δ∆𝑟  

  

 with 

  

 𝑉REF = 𝑉CAL + δ𝑉D + δ𝑉UE + δ𝑉TC + δ𝑉LIN + δ𝑉T + δ𝑉CM  

  

 i.e., 

  

 ∆𝐼DMM = 𝐼DMM − {𝑉CAL + δ𝑉D + δ𝑉UE + δ𝑉TC + δ𝑉LIN + δ𝑉T + δ𝑉CM} + δ𝐼RES + δ∆𝑟  

  

 where 

  

 ∆𝐼𝐷𝑀𝑀 = error in the indication of the DMM, 

 𝐼𝐷𝑀𝑀 = indication of the DMM, 

 𝛿𝐼𝑅𝐸𝑆 = rounding error due to the resolution of DMM being calibrated, 

 𝛿∆𝑟 = repeatability error of indication when DMM is measuring 𝑉REF, 

 𝑉𝑅𝐸𝐹 = reference voltage presented to the DMM, 

 𝑉𝐶𝐴𝐿 = calibrated voltage setting of multifunction calibrator, 

 𝛿𝑉𝐷 = error due to drift in voltage of multifunction calibrator since last calibration, 

 𝛿𝑉𝑈𝐸 = error due to uncorrected errors of multifunction calibrator, 

 𝛿𝑉𝑇𝐶 = error due to temperature coefficient of multifunction calibrator, 

 𝛿𝑉𝐿𝐼𝑁 = error due to linearity and zero offset of multifunction calibrator, 

 𝛿𝑉𝑇 = error due to thermoelectric voltages generated at junctions of connecting leads 

calibrator and multimeter, 

 𝛿𝑉𝐶𝑀 = effects due to imperfect common-mode rejection characteristics of the measurement 

system. 

  

L.3.5 The calibration uncertainty was obtained from the certificate for the multi-function calibrator. This 

had a value of 2.8 ppm as a relative uncertainty and a further 0.5 μV in absolute units (𝑘 = 2). 

  

L.3.6 The manufacturer's 1-year performance specification for the calibrator included information 

relating to the following effects: 𝑉𝐷, 𝑉UE, and 𝑉TC - these contributions are seen to be relative in 

nature; 𝑉𝐿𝐼𝑁   - this contribution is seen to be absolute in nature. 
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 The specification for the calibrator on the 1 V dc range was ±8 ppm of reading ±1 ppm of full-

scale. On this particular multifunction calibrator, the full-scale value is twice the range value; 

therefore, the absolute term is ±2 x 10-6 V = ±2 μV. The performance of the calibrator had been 

verified by examining its calibration data and history, using internal quality control checks and 

ensuring that it was used within the temperature range and other conditions as specified by the 

manufacturer. A rectangular distribution was assumed. 

  

L.3.7 The effects of thermoelectric voltages for the particular connecting leads used had been 

evaluated on a previous occasion. Thermoelectric voltages are independent of the voltage 

setting are therefore an absolute uncertainty contribution. An uncertainty of 1 μV was assigned, 

based on previous experiments with the leads. The probability distribution was assumed to be 

rectangular. 

  

L.3.8 Effects due to common-mode signals had also been the subject of a previous evaluation and an 

uncertainty of 1 μV, with a rectangular distribution, was assigned. This contribution is absolute in 

nature, as the common-mode voltage is unrelated to the measured voltage. 

  

L.3.9 No correction can be made for the rounding due to the resolution of the digital display of the 

multimeter. The least significant digit on the range being calibrated corresponds to 1 μV and 

there is therefore a possible rounding error δ𝐼RES of ±0.5 μV. The probability distribution is 

assumed to be rectangular, and this term is absolute in nature. 

  

L.3.10 The repeatability standard deviation of the calibration process had been established from previous 

measurements using a similar multimeter. This Type A evaluation, based upon 𝑚 = 10 

measurements at each value, was performed at 0 V and at 1.0 V (as well as other nearby values). 

Repeatability at the zero point was found to be insignificant compared with other absolute 

contributions, whereas for measurements at 1.0 V, the repeatability standard deviation 𝑠(δ∆𝑟) 

was found to be 2.5 ppm, (consistent with previous evaluations at other voltage levels) with  

𝜐 = (𝑚 − 1) = 9 degrees of freedom. 

  

 This calibration of the unknown DMM was established from a single measurement. However, 

assuming that the previous evaluation of repeatability using a similar multimeter is representative 

of this later measurement, the repeatability uncertainty can be obtained using the previously 

obtained repeatability standard deviation, and 𝑛 = 1 (as only one reading is made for the actual 

calibration). 

  

 So, from equation (4), the repeatability uncertainty is 

  

 𝑢rep(δ∆𝑟) =
𝑠(δ∆𝑟)

√𝑛
=

2.5

√1
= 2.5 ppm  

  

L.3.11 All uncertainties associated with the indicated value 𝐼DMM are accounted for by other terms, so 

no further contributions need be considered.  
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L.3.12 Summary table for  

∆𝐼DMM = 𝐼DMM − {𝑉CAL + δ𝑉D + δ𝑉UE + δ𝑉TC + δ𝑉LIN + δ𝑉T + δ𝑉CM} + δ𝐼RES + δ∆𝑟 

 

Symbol 

 

Source of uncertainty 

 

value 

(rel) 

ppm 

value 

(abs)  

μV 

Probability 

distribution 
Divisor 𝐶𝑖  

𝑢𝑖(∆𝐼DMM) 

ppm 

𝑢𝑖(∆𝐼DMM) 

μV 

𝜐𝑖 or 

𝜐eff 

𝑉CAL Calibration uncertainty 2.8 0.5 Normal 2.0 1 1.40 0.25 ∞ 

𝑉SPEC 
Specification of 

calibrator 
8.0 2.0 Rectangular √3 1 4.62 1.15 ∞ 

𝑉T 
Thermoelectric 

voltages 
 1.0 Rectangular √3 1  0.58 ∞ 

𝑉CM Common mode effects  1.0 Rectangular √3 1  0.58 ∞ 

δ𝐼RES Voltmeter resolution  0.5 Rectangular √3 1  0.29 ∞ 

δ∆𝑟 Repeatability 2.5  Normal 1.0 1 2.5  9 

𝑢𝑐(∆𝐼DMM) 

 
Standard uncertainty   Normal   5.42 1.46 >100 

𝑈 Expanded uncertainty   
Normal 

(𝑘 = 2) 
  10.8 2.92 >100 

 

L.3.13 It is assumed that the results of this calibration will be presented in tabular form (as is common 

practice).  

  

 When the uncertainty is not reported in the same table, one of the following equivalent 

statements regarding uncertainty can instead be given: 

  

 Mathematical representations: 

  

 The expanded uncertainty for the above measurements is  

  

 𝑈(∆𝐼DMM) = √(𝑣 × 11 ppm)2 + (2.9 μV)2  

  

 where 𝑣 is the corrected indication of the DMM 

  

 So, for example,  

if 𝑣 = 500 mV we find that  

𝑈(∆𝐼DMM) = √(500 mV × 11 ppm)2 + (2.9 μV)2 =  √(5.5 μV)2 + (2.9 μV)2 = 6.2 μV  

  

  

 Alternatively, this expression can be written in terms of a defined function, e.g., 

  

 𝑈(∆𝐼DMM) = 𝑄[𝑣 × 11 ppm, 2.9 μV]  

  

 where  

 𝑄[𝑎, 𝑏] = [𝑎2 + 𝑎𝑏]1 2⁄   

  

  

 Note that in practice the parameter (𝑣 in this case) is often omitted, and expressions such as 

 𝑈 = √(11 ppm)2 + (2.9 μV)2 

 or 

 𝑈 = 𝑄[11 ppm, 2.9 μV] 

 might be encountered. 
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 Although this simplification doesn’t usually create any confusion, it should be recognised that 

these expressions are not mathematically complete or dimensionally consistent (in this example 

the relative term is ‘dimensionless’ whereas the absolute term has dimensions corresponding to 

voltage). 

The simplification should be avoided when there is any possibility of ambiguity in its use. 

  

 Non-mathematical representation: 

 The expanded uncertainty for the above measurements is found by taking the square root of the 

sum of the squares of two values corresponding to: 

 a) Relative uncertainty of 11 ppm of the corrected indication of the DMM, and 

 b) Absolute uncertainty of 2.9 μV 

  

L.3.14 In each case the result should be accompanied by the usual statement: 

  

 The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage 

factor 𝑘 = 2, providing a coverage probability of approximately 95 %. The uncertainty evaluation 

has been carried out in accordance with UKAS requirements. 

  

L.3.15 Uncertainties reported in this form can be imported into subsequent evaluations as single 

enumerated values i.e., as a single input value computed from the expression. 

  

 Alternatively, they can be imported as two separate (independent) inputs corresponding to the 

relative and the absolute quantity. 
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Appendix M Assessment of Conformity with Specification 

  

M.1 In test reports and to some extent in calibration certificates, there will be occasions where it 

becomes necessary to make a statement about whether or not the measured result indicates 

conformity of the measurand with some form of specification.  

  

M.2 Guidance on performing and reporting assessment of conformity with specifications is given in 

UKAS document LAB 48: ‘Decision Rules and Statements of Conformity’ [14] and the 

references therein. 
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Appendix N Uncertainties for Test Results 

  

N.1 Introduction 

  

N.1.1 ISO/IEC 17025 [5] requires that testing laboratories shall have and apply procedures for 

estimating measurement uncertainty. 

  

N.1.2 Testing laboratories should therefore have a defined policy covering the evaluation and reporting 

of the uncertainties associated with the tests performed. The laboratory should use documented 

procedures for the evaluation, treatment and reporting of the uncertainty. 

  

N.1.3 The methodology for estimation of uncertainty in testing is no different from that in calibration 

and therefore the procedures described in this document apply equally to testing results.  

  

N.1.4 It is however recognised that in certain areas of testing it may be known that a significant 

contribution to uncertainty exists but that the nature of the test precludes a rigorous evaluation of 

this contribution. In such cases, ISO/IEC 17025 requires that a reasonable estimation be made 

and that the form of the reporting does not give an incorrect impression of the uncertainty. 

  
 NOTES: 

1. In some fields of testing, it may be the case that the contribution of measuring instruments to the overall uncertainty 

can be demonstrated to be insignificant when compared with the repeatability of the process. Nevertheless, such 

instruments have to be shown to comply with the relevant specifications, normally by calibration. 

 

2. It will sometimes be the case that the procedure requires standard reference materials to be subject to the same 

process, the result being the difference between the readings for the analyte and the reference material. In such 

cases, much of the process can be considered to be negatively correlated and the measurement uncertainty can be 

evaluated from the resolution and repeatability of the process; matrix effects may also have to be considered. 

  

N.1.5 Many tests involve some form of examination (or inspection) where the outcome of the test is a 

nominal property (e.g., colour, shape, species, sequence of markers…). Others might involve 

establishing a position on an ordinal scale (e.g., Rockwell C, Richter, Beaufort, octane…). In the 

case of these ‘qualitative’ tests the concept of measurement uncertainty does not readily apply. 

  

 But that is not to say that measurement uncertainty doesn't play a role in such tests… in fact, in 

most cases, such tests are performed under defined conditions that are themselves subject to 

measurement. 

  

 For example:  

A test requires an inspector to examine the colour of a fluid sample after preparation according 

to a defined procedure and processing in an oven at (40  1) C for between 60 min and 65 min. 

  

 For this test, the examination of the colour involves a subjective judgement from a trained and 

competent examiner whose reliability can be established by proficiency testing. However, the 

oven temperature and elapsed time are both measurable quantities for which a value and a 

measurement uncertainty can be established. 
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N.2 Common sources of uncertainty in testing 

  

N.2.1 The following general issues will apply to many areas of testing: 

  

(a) Incomplete definition of the test - the requirement may not be clearly described, e.g., the 

temperature of a test may be given as 'room temperature'. 

  

(b) Imperfect realisation of the test procedure; even when the test conditions are clearly defined it 

may not be possible to produce the theoretical conditions in practice due to unavoidable 

imperfections in the materials or systems used. 

  

(c) Sampling - the sample may not be fully representative. In some disciplines, such as 

microbiological testing, it can be very difficult to obtain a representative sample. 

  

(d) Inadequate knowledge of the effects of environmental conditions on the measurement process, 

or imperfect measurement of environmental conditions. 

  

(e) Personal bias and human factors; for example: 

  

 - Reading of scales on analogue indicating instruments. 

  

 - Judgement of colour. 

  

 - Reaction time, e.g. when using a stopwatch. 

  

 - Instrument resolution or discrimination threshold, or errors in graduation of a scale. 

  

(f) Values assigned to measuring equipment and reference materials. 

  

(g) Changes in the characteristics or performance of measuring equipment or reference materials 

since the last calibration. 

  

(h) Values of constants and other parameters used in data evaluation. 

  

(i) Approximations and assumptions incorporated in the measurement method and procedure. 

  

(j) Variations in repeated observations made under similar but not identical conditions - such 

random effects may be caused by, for example, electrical noise in measuring instruments, 

short-term fluctuations in the local environment, e.g. temperature, humidity and air pressure, 

variability in the performance of the person carrying out the test and variability in the 

homogeneity of the sample itself. 

  

 These sources are not necessarily independent.  

  

 In addition, unrecognised systematic effects may exist that are not considered, but contribute to 

error. This is one reason that participation in inter-laboratory comparisons, proficiency testing 

schemes and internal cross-checking of results by different means are encouraged. 

  

N.2.2 Information on some of the sources of these errors can be obtained from: 

  

(a) Data in calibration certificates - this enables corrections to be made and uncertainties to be 

assigned. 

  

(b) Previous measurement data - for example, history graphs can be constructed and can yield 

useful information about changes with time. 
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 (c) Experience with or general knowledge about the behaviour and properties of similar materials 

and equipment. 

  

(d) Accepted values of constants associated with materials and quantities. 

  

(e) Manufacturers' specifications. 

  

(f) All other relevant information. 

  

 These are all referred to as Type B evaluations because the values were not obtained by 

statistical means. However, the influence of random effects is often evaluated by the use of 

statistics; if this is the case then the evaluation is designated Type A. 

  

N.3 The ‘top-down’ approach 

  

N.3.1 The organisation of the uncertainty budget around a measurement equation as described in this 

guidance document is commonly described as a ‘bottom-up’ approach. However, in some 

situations, it is not feasible to establish a detailed measurement equation and a different ‘top-

down’ approach is taken. 

  

N.3.2 Guidance documents such as, EURACHEM/CITAC Guide CG 4 “Quantifying Uncertainty in 

Analytical Measurement” [10] and ISO 21748 “Guidance for the use of repeatability, 

reproducibility and trueness estimates in measurement uncertainty evaluation” [8] describe a 

process for evaluating measurement uncertainty using data obtained from collaborative studies 

conducted in accordance with ISO 5725-2 “Accuracy (trueness and precision) of measurement 

methods and results — Part 2: Basic method for the determination of repeatability and 

reproducibility of a standard measurement method” [7] 

  

N.3.3 Measurement methods that have been evaluated by this ‘collaborative study’ approach are 

characterised in terms of ‘precision’ i.e., by a ‘repeatability standard deviation’ and a 

‘reproducibility standard deviation’. In some cases, a ‘method bias’ and its associated 

uncertainty will also be established. 

  

N.3.4 In its simplest form, a laboratory that demonstrates control of precision and bias, and introduces 

no additional factors (from operations not conducted during the collaborative study) may use the 

reproducibility standard deviation for estimating the standard uncertainty.  
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Appendix P Comparing Independent Results using En ratio 

  

P.1 The equivalence of two independent measurement results is often compared by computing the 

Normalised Error ratio (𝐸𝑁 ratio), where 

  

 
𝐸𝑁 =

𝐿1 − 𝐿2

√(𝑈1)2 + (𝑈2)2
 

  

 𝐿1 = the value of measurement result 1 

 𝐿2 = the value of measurement result 2 

 𝑈1 = the expanded uncertainty associated with measurement 1 

 𝑈2 = the expanded uncertainty associated with measurement 2 

  

 It is common to perform the test with uncertainties expanded for 95 % coverage probability. In 

this case, if the results are equivalent, the 𝐸𝑁 ratio should be within the range ±1, on 

approximately 95 % of occasions. 

  

 If the analysis reveals that 𝐸𝑁 lies outside this range more frequently than expected, some 

investigation and corrective action will be required. 

  

  
NOTES:  

1 The commonly used formation of the 𝐸𝑁 ratio described above, involving the direct combination of expanded 

uncertainties, is not consistent with the GUM [1] 

 Instead, it should be evaluated from 

 
𝐸𝑁 =

𝐿1 − 𝐿2

𝑘𝑝√(𝑢1)2 + (𝑢2)2
 

 where 𝑢1 and 𝑢2 are the standard uncertainties associated with 𝐿1 and 𝐿2, and 𝑘𝑝 is the coverage factor established 

for the PDF of the quantity (𝐿1 − 𝐿2). 

 In situations where the PDFs for both 𝐿1 and 𝐿2 have normal distributions this gives identical values to the 

commonly used equation. 

  

2 It is not physically realistic for comparisons to produce consistently small 𝐸𝑁 values. This usually indicates that 𝑈1 

and/or 𝑈2 are significant overestimates. This can arise from failure to identify correlation between 𝐿1 and 𝐿2 ,or 

simply from the (poor) practice of basing uncertainty evaluations on ‘safe’ or ‘conservative’ estimates rather than on 

realistic estimates for input quantities (as required by the GUM). 

  

3 The 𝐸𝑁 ratio (as defined above) is not usually appropriate for testing the equivalence of operators or processes in 

the same laboratory, as the measurement results are not likely to be independent. To use it in such cases an 

approximation can be obtained by omitting all common inputs (such as those relating to temperature effects and 

calibration traceability) from each uncertainty evaluation, so that only independent quantities, such as errors of 

resolution and repeatability remain. 
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Appendix Q Symbols 

The symbols used are taken mainly from the GUM [1]. The meanings have also been described further in the 

text, usually where they first occur, but are summarised here for convenience of reference. 

  

𝑓 Functional relationship between the measurand 𝑌 and the input quantities 𝑋𝑖 on which 𝑌 

depends 𝑌 = 𝑓(𝑋𝑖), and between output estimate 𝑦 and input estimates 𝑥𝑖, thus, 𝑦 = 𝑓(𝑥𝑖). 

  

𝑐𝑖 =
𝜕𝑓

𝜕𝑥𝑖

 
Sensitivity coefficient 𝑖 th input quantity. 

Partial derivative of the functional relationship 𝑓, taken with respect to input quantity 𝑋𝑖, 

evaluated at 𝑋𝑖 = 𝑥𝑖. 

  

𝑎𝑖 Estimated semi-range of a probability distribution for an input quantity 𝑥𝑖 with width 2𝑎𝑖. 

  

𝑎R = 𝑐R𝑎 Semi-width of a rectangular input distribution, corresponding to the semi-width 𝑎 of the input 

distribution scaled by the corresponding sensitivity factor 𝑐R. 

  

𝑘 Coverage factor (general). 

  

𝑘𝑝 Coverage factor used to calculate the expanded uncertainty 𝑈𝑝 for a defined coverage 

probability 𝑝., e.g., 𝑘95%. 

  

𝑚 Number of readings or observations that are used for the evaluation of 𝑠(𝑞𝑗). 

  

𝑛 Number of readings or observations that contribute to a mean value. 

  

𝑁 Number of input quantities 𝑥𝑖 on which the value of the measurand depends, 𝑖 = 1 to 𝑁. 

  

𝑞𝑗 𝑗th repeated observation of randomly varying quantity 𝑞. 

See Note. 

  

�̅� Arithmetic mean or average of 𝑛 repeated observations of randomly varying quantity 𝑞. 

  

𝑝 Coverage probability or ‘level of confidence’ (0 ≤ 𝑝 ≤ 1).  

Often expressed in percentage terms (0 % ≤ 𝑝 ≤ 100 %). 

  

𝜎 The standard deviation that characterises the variation in a measurement process 

(The limit value of 𝑠 that would be found were it possible to repeat a measurement a very large 

number of times). 

  

𝑠 Best available estimate of 𝜎.  

Referred to here as the repeatability standard deviation. 

  

𝑢rep =
𝑠

√𝑛
 Repeatability uncertainty. 

  

𝑠(𝑞𝑗) Value of 𝑠 obtained from a sample of 𝑚 observations {𝑞1, … , 𝑞𝑚}. 

See Note. 

  

𝑡𝑝(𝜈eff) Student t-factor for 𝜈eff degrees of freedom corresponding to a given coverage probability 𝑝. 

  

𝑢(𝑥𝑖) Standard uncertainty of input estimate 𝑥𝑖. 

  

𝑢𝑖(𝑦) Standard uncertainty of input estimate 𝑥𝑖.expressed in terms of the measurand,  

𝑢𝑖(𝑦) = |𝑐𝑖|𝑢(𝑥𝑖) 
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𝑢c(𝑦) Combined standard uncertainty of output estimate 𝑦. 

  

𝑈𝑝, 𝑈 Expanded uncertainty of output estimate 𝑦 that defines an interval 𝑦 ± 𝑈, with a defined 

coverage probability, 𝑝 of containing the measurand 𝑌. 

  

𝜈𝑖 Degrees of freedom of standard uncertainty 𝑢(𝑥𝑖) of input estimate 𝑥𝑖. 

  

𝜈eff Effective degrees of freedom of 𝑢𝑐(𝑦) used to obtain 𝑡𝑝(𝜈eff). 

  

δ𝑥 The prefix δ is used to demote a quantity whose most likely value is zero, although there is an 

associated (non-zero) uncertainty.  

  

∆𝑥 The symbol ∆ is used to represent a difference, a measurement error or a correction for which 

a non-zero value is usually known. 

  

N, R, T, U Labels, respectively used to designate, normal, rectangular, triangular and U-shaped 

probability distributions. 

  

N, R, T, U Subscripts, respectively used to designate, normal, rectangular, triangular and U-shaped 

probability distributions. 

  
NOTE  The GUM uses the symbols 𝑞𝑘  and 𝑠(𝑞𝑘) whereas 𝑞𝑗  and 𝑠(𝑞𝑗) are used here. M3003 uses the subscript 𝑗 instead 

of 𝑘 in order to avoid any possible confusion with the coverage factor 𝑘. 
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