
 

European Federation of National Associations of 
Measurement, Testing and Analytical Laboratories 
 

 
Technical  Report  No.  1/2006 
August 2006 

Guide to the Evaluation of 
Measurement Uncertainty 
for Quantitative Test Results 
 T 

e 
c 

h 
n 

i c
 
a 

l   
R

 
e 

p 
o 

r t
 

 

 



2 / 50 Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impressum 
 
EUROLAB Technical Report 1/2006 
“Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results” 
 
August 2006 

 
EUROLAB Technical Secretariat - EUROLAB 
1 rue Gaston Boissier  
75724 PARIS Cedex 15  
FRANCE 
 
Phone:  +33 1 40 43 39 45  
Fax:  +33 1 40 43 37 37  
e-Mail:  eurolab@lne.fr 
URL:  www.eurolab.org 
  
 

 



EUROLAB Technical Report 1/2006 – Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 3 / 50 

Guide to the Evaluation of Measurement Uncertainty for 
Quantitative Test Results 

 
 

Editorial note 
This document is based on the BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei 
quantitativen Prüfergebnissen published by the Federal Institute for Materials Research and 
Testing (BAM), Germany [Forschungsbericht 266, 2004], which was jointly agreed by BAM 
and the EUROLAB Board of Administrators to be translated into English and published as a 
EUROLAB Technical Report.  
 
The original document was prepared on behalf of the BAM Quality Management Committee 
(AQM) as a technical guidance document supporting the BAM Directive for estimation and 
specification of the uncertainty of test results.  
 
Author:  Werner Hässelbarth 

Contributions: Manfred Golze, Siegfried Noack, Andreas Subaric-Leitis 

Translation: Nigel Pye  

Editing: Werner Hässelbarth and Manfred Golze 
 
Comments are acknowledged from Bertil Magnusson (SP, Sweden), Pascal Launey (LNE, 
France) on behalf of the measurement uncertainty expert group of EUROLAB-France, and 
Vitor Ramos (RELACRE, Portugal). 
 
The draft technical report was approved by the EUROLAB Technical Committee for Quality 
Assurance in Testing (TCQA) at its meeting on 8 May 2006 and by the EUROLAB General 
Assembly in Borås, Sweden, on 16 May 2006. 
 



4 / 50 Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 

 



EUROLAB Technical Report 1/2006 – Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 5 / 50 

Contents 
 
Foreword ............................................................................................................................................................................ 7 
1 Definitions ......................................................................................................................................................... 8 
 1.1 Terms of Measurement Uncertainty ....................................................................................................... 8 
 1.2 Terms of Test Accuracy ......................................................................................................................... 9 
2 Basics ......................................................................................................................................................................... 10 
 2.1 Basic Metrological Terms and Concepts.............................................................................................. 10 
 2.2 Accuracy, Trueness and Precision; Target Model................................................................................ 13 
 2.3 New Aspects in "Guide to the Expression of Uncertainty in Measurement”……. ................................. 14 

 2.3.1 New Definition of Measurement Uncertainty........................................................................... 14 
 2.3.2 Determining Type A and Type B Uncertainty Components .................................................... 15 
 2.3.3 Equal Treatment of All Uncertainty Components .................................................................... 16 
 2.3.4 Expanded Uncertainty ............................................................................................................ 16 

 2.4 Worst-case Estimation of Measurement Uncertainty ........................................................................... 17 
3 Analytical-Computational Determination of Measurement Uncertainties.......................................................... 17 
 3.1 Overview .............................................................................................................................................. 17 
 3.2 Classification of Measurement Uncertainty According to Evaluation Type........................................... 18 
 3.3 General Method for Determination of Uncertainty ................................................................................ 19 
 3.4 Instructions on the Use of Uncertainty Budgets ................................................................................... 23 
 3.5 Worst-case Estimation ......................................................................................................................... 24 
4 Estimation of Measurement Uncertainties using Within-laboratory Validation and Quality Control Data .... 25 
 4.1 General ................................................................................................................................................ 25 
 4.2 One-Point Protocol............................................................................................................................... 25 

 4.2.1 Investigation of Precision........................................................................................................ 26 
 4.2.2 Investigation of Bias................................................................................................................ 27 
 4.2.3 Dealing with Observed Bias.................................................................................................... 27 

 4.3 N-Point Protocol (N ≥ 2) ....................................................................................................................... 29 
 4.3.1 Interpolation ............................................................................................................................ 29 
 4.3.2 Least Squares Fit.................................................................................................................... 30 

5 Estimation of Measurement Uncertainties using Inter-laboratory Comparison ............................................... 31 
 5.1 Inter-laboratory Comparisons for Method Validation ............................................................................ 31 
 5.2 Inter-laboratory Comparisons for Proficiency Testing .......................................................................... 32 
 5.3 Inter-laboratory Comparisons for Reference Material Certification ...................................................... 33 
6 Hybrid Strategies for Evaluation of Measurement Uncertainties........................................................................ 34 
7 Specification and Documentation of Measurement Uncertainty ........................................................................ 35 
References ........................................................................................................................................................................ 35 
Annex................................................................................................................................................................................. 36 
 A.1  Frequently Occurring Sources of Uncertainty ................................................................................................. 36 
 A.2  Uncertainty in Linear Calibration ..................................................................................................................... 37 
  A.2.1 General .................................................................................................................................. 37 

 A.2.2 Determination of Intercept and Slope ..................................................................................... 38 
 A.2.3 Evaluating the Uncertainty of Intercept and Slope.................................................................. 39 

 A.3  Modelling of Process Steps by Efficiencies and Increments .......................................................................... 41 
 A.4  Numerical Methods for Uncertainty Propagation ............................................................................................ 43 
  A.4.1 Finite Difference Calculation................................................................................................... 43 
  A.4.2 Monte Carlo Simulation .......................................................................................................... 44 
  A.4.3 Software ................................................................................................................................. 44 
 A.5  Uncertainty of Mean Values ............................................................................................................................ 45 
  A.5.1 General .................................................................................................................................. 45 
  A.5.2 Correlation within a Measurement Series............................................................................... 46 
 A.6  Evaluation of Covariances and Correlation Coefficients................................................................................. 47  
  A.6.1 General .................................................................................................................................. 47 
  A.6.2 Uncertainty Propagation......................................................................................................... 48 
  A.6.3 Parallel Measurements........................................................................................................... 48 
  A.6.4 Correlation Coefficients .......................................................................................................... 49 
 
 



6 / 50 Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 

 
 

 



EUROLAB Technical Report 1/2006 – Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 7 / 50 

Foreword 
 

After more than ten years since the first arrival of measurement uncertainty in the EUROLAB 
community (where the GUM was presented at the Eurolab Symposium in Florence 1994), 
evaluation of measurement uncertainty for test results is still an issue of major concern – not 
in principle but in daily practice. 

Concerning principal issues, the Guide to the Expression of Uncertainty in Measurement, 
known as the GUM, is acknowledged as the master document on measurement uncertainty 
throughout testing. The term “measurement uncertainty” is recognised to apply to all types of 
quantitative test results, and the GUM principles are fully accepted.  

However, when it comes to evaluating the uncertainty of the results for a (quantitative) test 
procedure, the GUM is often criticised to be inapplicable. This impression is due to the fact 
that the GUM almost exclusively treats a single approach for uncertainty evaluation: the 
“modelling approach” based on a comprehensive mathematical model of the measurement 
procedure, where every uncertainty contribution is associated with a dedicated input quantity, 
the uncertainty contributions are evaluated individually and combined as a root sum of 
squares. This is therefore often (mis)conceived as being “the GUM approach” for uncertainty 
evaluation. Actually the GUM principles admit a variety of approaches, but this fact  was 
buried under a plethora of papers and lectures celebrating the “modelling approach” as a 
new paradigm in measurement quality assurance. Only recently alternative “empirical 
approaches” received greater attention. They are based on whole-method performance 
investigations designed and conducted as to comprise the effects from as many relevant 
uncertainty sources as possible. The data utilised in these approaches are typically precision 
and bias data obtained from within-laboratory validation studies, quality control, 
interlaboratory method validation studies, or proficiency tests. Such approaches are fully 
compliant with the GUM, provided that the GUM principles are observed.  

Eurolab has consistently advocated the use of empirical approaches as a valid, and often 
more practical alternative to the modelling approach, a.o. by publication of Technical Reports 
on measurement uncertainty in testing. The first in this series (No. 1/2002) is an introductory 
text for newcomers. This is now supplemented by a comprehensive technical guide for more 
experienced users. It provides a survey both of the modelling or “bottom-up” approach, which 
presupposes a complete mathematical model of the measurement process, and empirical or 
“top-down” approaches based on whole-method performance data. A further Eurolab TR 
under development by a dedicated expert group will deal with comparison and combination 
of uncertainty estimates obtained from the major approaches currently available. That report 
will include a collection of examples from different testing fields, where the results obtained 
using different approaches are compared, and the conclusions drawn from the comparison 
are discussed. 
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Guide to the Evaluation of Measurement Uncertainty for 
Quantitative Test Results 
 

 

This document offers techical guidance on the evaluation of measurement uncertainty for 
quantitative test results. While fully compliant with the principles of the Guide to the 
Expression of Uncertainty in Measurement (GUM), the document also includes alternative 
approaches to the “bottom-up” approach, based on a comprehensive mathematical model of 
the measurement process, as emphasized in the GUM. These are “top-down” approaches 
utilising whole-method performance data from inter-laboratory comparisons (collaborative 
method validation, proficiency testing) and from within-laboratory validation and quality 
control data (precision, bias). Supplementary information concerning frequently occurring 
uncertainty sources and addressing data evaluation problems arising in uncertainty 
evaluation is given in various annexes.  

 

 

1 Definitions 
In these guidelines the terms “quantitative test“ and “measurement“ will be used as 
synonyms. In the same token and in accordance with relevant standards, the terms 
measurement, measurand, measuring object, measurement result and measurement 
uncertainty will predominantly be used. Without changing the basic content, these terms 
could be replaced with test, test quantity, test item, test result and uncertainty of the result. 

Throughout this document the term “measurement procedure” is used to designate what is 
often called a “measurement method”: a protocol based on a specified measurement 
technique, developed and validated for specified measuring objects and measuring 
conditions. Only a well-defined measurement procedure allows for an associated 
measurement uncertainty which is applicable to within-specification measurements.   

 

1.1 Terms of Measurement Uncertainty 
The objective of a measurement (or any other quantitative investigation) is to determine an 
estimate for the true value of the measurand. This estimate, i.e. the measurement result, 
may be an individual measured value. Often however, the measurement result is obtained 
from a number of measured values by a statistical evaluation procedure, e.g. as a mean 
value. For each measurement procedure the expression of the measurement result and the 
data evaluation must be unambiguously defined.  

As a rule the use of measurement results requires knowledge of the accuracy, i.e. the extent 
of the potential deviation of the measurement result from the true value of the measurand 
must be known. In metrology, “uncertainty of measurement“ is used as a quantitative 
measure of accuracy. This term is also used for the uncertainty of quantitative test results. 

In the following, three definitions from basic terminology documents are reproduced (in 
extracts) which emphasise different aspects of uncertainty while their meaning is essentially 
the same.  

Uncertainty (of measurement) 
Parameter, associated with the result of a measurement, that characterises the dispersion of 
the values that could reasonably be attributed to the measurand. 

(Source: International Vocabulary of Basic and General Terms in Metrology) 
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Uncertainty 

Parameter obtained from measurements, which serves, together with the measurement 
result, to characterise a range of values for the true value of the measurand.  

(Source: DIN 1319-1) 

Uncertainty of the result 
Estimated quantity intended to characterise a range of values which contains the reference 
value, where the latter may be either the true value or the expectation, depending on 
definition or agreement.  

(Source: DIN 55350-13) 

The following terms make up the "Guide to the Expression of Uncertainty in Measurement" 
(GUM) system of terms. These terms and their symbols defined by GUM will be used 
throughout this document. 

Standard uncertainty (u) 
Uncertainty of the result of a measurement expressed as a standard deviation. 

Combined standard uncertainty (u) 
Standard uncertainty of the result of a measurement when that result is obtained from the 
values of a number of other quantities, equal to the positive square root of a sum of terms, 
the terms being the variances or covariances of these other quantities weighted according to 
how the measurement result varies with changing these quantities. 

Note: In GUM, combined standard uncertainties are marked by an index with uc. This 
marking will not be used here, since a distinction between combined and non-
combined standard uncertainties has no practical relevance in testing. 

Expanded uncertainty (U) 
Quantity defining an interval about the result of a measurement that may be expected to 
encompass a large fraction of the distribution of values that could reasonably be attributed to 
the measurand. 

Coverage factor (k) 
Numerical factor used as a multiplier of the (combined) standard uncertainty in order to 
obtain an expanded uncertainty. 

 

1.2 Terms of Test Accuracy 
The terms in the previous section are predominantly new creations from the field of 
metrology, opposed to a generally accepted system of terms used in the field of testing and 
chemical analysis. Since this system of terms is in common use there, the principal terms are 
compiled in this section, taken from the fundamental terminology standard ISO 3534-1. The 
relationship of these two systems of terms will be discussed in Section 2. 

Accuracy  
The closeness of agreement between a test result and the accepted reference value. 

Trueness  
The closeness of agreement between the average value obtained from a large series of test 
results and an accepted reference value.  
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Precision 
The closeness of agreement between independent test results obtained under stipulated 
conditions. 

 

 

2 Basics 
 

2.1 Basic Metrological Terms and Concepts  
Terms in bold are defined in the relevant standards. Unless stated otherwise, the terms are 
based on the International Vocabulary of Basic and General Terms in Metrology (VIM), 1994, 
2nd Edition. In accordance with relevant standards, the terms measurement, measurand, 
measurement result and measurement uncertainty will exclusively be used in this section. 
Without changing the basic content, these terms could be replaced with test, test quantity, 
test result and uncertainty of the result. 

In the simplest case of a measurement one has only a single measurand, i.e. the subject of 
the measurement is only one particular quantity. For instance, this may be the vapour 
pressure of a given water sample at 20 ºC. It is crucial that the measurement task is 
accurately defined by specifying all relevant parameters, e.g.  time, temperature or pressure. 
If the measurand of a measurement task is accurately defined in this way, then an 
unambiguous value, the so-called true value, can be attributed to it. An ideal measurement 
would yield this true value. 

However, since one always has to work with real measurements, there is an (unknown) 
difference, called error between the measurement result and the true value. Repeated 
measurements generally fail to yield the same value each time, rather, they produce values 
more or less close to each other. Repeating a measurement many times and plotting the 
frequency with which a value x occurs as a function of x, one would obtain a bell-shaped 
curve, which can be approximated in many cases by the so-called normal distribution (see 
Figure 2.1). A normal distribution is characterised by two parameters: the location parameter 
μ, which indicates the position of the maximum, and the standard deviation σ, which 
describes the width of the curve. 

Because of this dispersion of measured values, if possible and efforts are justified, 
measurements are carried out several times (n times) and the arithmetic mean x̄ of n 
individual values xi is calculated according to Eq. (2.1).  

 ∑
=

=
n

1i
ix

n
1x  (2.1) 

(x̄: arithmetic mean; xi: i-th measured value; n: number of measurements, n > 1) 

The (experimental) standard deviation s calculated by Eq. (2.2) is a measure of the 
dispersion of the individual values, i.e. the width of the curve in Figure 2.1. 

 ∑
=

−
−

=
n

1i

2
i )xx(

1n
1s  (2.2) 

(s: experimental standard deviation; x̄: arithmetic mean; xi: i-th measured value; n: number of 
measurements, n > 1) 
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Figure 2.1 Distributions for individual measured values x with parameters μ and σ and for the 
mean values x̄ from n measurements each with parameters μ and σx̄. 

 

If such series of measurements, each comprising n individual measurements are repeated 
many times, and the means calculated and plotted analogously to the diagram of the 
individual values, another normal distribution is obtained with the same position parameter μ, 
but a smaller width (see Figure 2.1). The standard deviation σx̄ of this distribution is given by:  

 
nx

σ
=σ  (2.3) 

(σx̄ : standard deviation of the means; σ: standard deviation of the individual values;  
n: number of measured values used for the calculation of means). 

The dispersion of the measured values obtained under apparently identical conditions is the 
result of a multiplicity of influences beyond control of the measuring conditions, whose effect 
changes when measurements are repeated. The deviations of the measured values from the 
central value μ, varying between positive and negative, are designated as random errors. If 
only random errors are present, μ equals the true value of the measurand. One would obtain 
μ as the mean x̄ if one could repeat the measurement for an unlimited number of times, 
because the standard deviation of the mean would then shrink towards zero. 

In practice however, only a limited number of repetitions of the measurement is possible, so 
a certain dispersion of the means and thus a certain lack of knowledge of the measurand 
remains, which one seeks to estimate by measurement uncertainty. Measurement 
uncertainty is defined according to DIN 1319-1 as a "parameter which is obtained from 
measurements and, together with the measurement result, serves to characterise a range of 
values for the true value of the measurand". 

In addition to these random errors, one also usually has to deal with so-called systematic 
errors. They result in the centre of the distribution being shifted away from the true value, 
even in the case of infinite repetitions (see Figure 2.2). Potential causes for random and 
systematic errors are listed in Annex A.1. Systematic errors detected should be eliminated, 
as far as possible, or minimized by applying suitable corrections, accounting for the 
uncertainty of the correction in the uncertainty budget. 

   Distribution of mean values 

 
 σx̄ 
 
 
 
 σ 

       Distribution of individual values 
 
 
 

 μ 
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Figure 2.2 Measured values for simultaneously occurring random and systematic errors 

 

Figure 2.3 shows how the different types of measurement error enter into the result of a 
measurement and the associated uncertainty. 

 

Measurement error

Systematic 
measurement error

Random  
measurement error 

Known systematic
error 

Unknown systematic
error

Correction Residual error

Measurement result Measurement uncertainty

 
 

Figure 2.3 Types of measurement error and their consideration in determining the result of a 
measurement and the associated uncertainty (Figure according to M. Hernla, QZ 
41 (1996), 1156) 

 

True value Individual valueMean value 

Random error 

Systematic error

Frequency 
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2.2 Accuracy, Trueness and Precision; Target Model 
The terms accuracy, trueness and precision from ISO 3534-1 as defined in Section 1 of 
this guide can be used to characterise a measurement procedure with respect to the 
associated uncertainty.   

Accuracy as an umbrella term characterises the closeness of agreement between a 
measurement result and the true value. If several measurement results are available for the 
same measurand from a series of measurements, accuracy may be split up into trueness 
and precision, where trueness accounts for the closenes of agreement between the mean 
value and the true value, while precision accounts for the closeness of agreement between 
the individual values among themselves (see Figure 2.4). 

 

 Accuracy 

 

 

 Trueness Precision 

 

 Figure 2.4 Accuracy as an umbrella term for trueness and precision 

 

The different possible combinations which result from true or wrong and precise or imprecise 
results, can be best described using the target model (Figure 2.5). 

 

 

precise 
and 
true 

imprecise 
but 
true 

precise 
but 
wrong 

imprecise 
and 
wrong  

 

Figure 2.5 Target model to illustrate trueness and precision. The centre of the target 
symbolises the (unknown) true value. 

 

Estimates of precision are strongly dependant on the conditions under which precision is 
investigated. Therefore repeatability precision, reproducibility precision and 
intermediate precision are distinguished, referring to repeatability conditions, 
reproducibility conditions and  intermediate conditions. 
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Repeatability conditions include: 
− the same measurement procedure, 
− the same laboratory 
− the same operator, 
− the same equipment, 
− repetition within short intervals of time. 

Reproducibility conditions include: 
− the same measurement procedure, 
− different laboratories, 
− different operators, 
− different equipment. 

Repeatability conditions and reproducibility conditions represent the cases of minimum and 
maximum variability in conditions for repeated measurements. Conditions between these 
extreme cases are called intermediate conditions. When using intermediate conditions, it 
must be specified exactly, which factors are varied and which are constant. For the within-
laboratory characterisation of precision of measurement procedures e.g. the following 
conditions are used: 
− the same measurement procedure, 
− the same laboratory, 
− different operators, 
− the same equipment (alternatively: different equipment), 
− repetition within long intervals of time. 

This special case of intermediate conditions is often called “within-laboratory reproducibility 
conditions“. 

While determining the precision of a measurement procedure is fairly straightforward, it is 
much more difficult to investigate the trueness of a measurement procedure since the true 
value of the measurand is in principle unknown. One approach is to apply the measurement 
procedure to suitable reference objects (standards, material measures, reference materials). 
Alternatively, a reference procedure is applied in parallel with the measurement procedure to 
suitable measuring objects. The value attributed to a reference object or the result obtained 
by the reference procedure, respectively, are then used as a reference value, i.e. as an 
estimate of the unknown true value, whose uncertainty is known and sufficiently small for the 
intended purpose. Trueness is then referred to this reference value. 

 

2.3 New Aspects in "Guide to the Expression of Uncertainty in Measurement" 

The Guide to the Expression of Uncertainty in Measurement (GUM) takes a somewhat 
different view compared with the traditional approach and promotes a unified and pragmatic 
procedure for determining the uncertainty, which will be explained in the following. 

 

2.3.1 New Definition of Measurement Uncertainty 
Since the true value is an ideal quantity, which is in principle unknown, a new definition has 
been developed for the term measurement uncertainty when drafting the GUM, which does 
not refer to the true value any more:  

Uncertainty of Measurement 
Parameter, associated with the result of a measurement, that characterises the dispersion of 
the values that could reasonably be attributed to the measurand. 
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This definition, explained in Annex D of GUM in great detail, has also been included in the 
2nd  edition of the International Vocabulary of Basic and General Terms in Metrology (VIM). 

The range of values for the measurand typically includes values obtained under repeatability 
conditions (see above), and may also include values obtained under reproducibility 
conditions, e.g. by another operator, in another laboratory or by another measurement 
procedure, accounting for biases between operators, laboratories and measurement 
procedures. In addition, differences with respect to data processing (e.g. correction of 
identified bias, cf. Figure 2.3) may also contribute to this dispersion. Also the measurand may 
not be defined so exactly that a single true value can be attributed to it. 

Unless some of the various values obtained experimentally or derived by calculation or 
theory turn out to be wrong, all of them must be assigned to the measurand. Uncertainty is a 
measure for the width of the range derived from these data and, together with an appropriate 
mean value as the result of measurement, describes the level of knowledge about the 
measurand. Because of our limited knowledge it is quite possible that the uncertainty is 
underestimated due to missing uncertainty components. 

Despite this somewhat different view, there is no fundamental disagreement between GUM 
and traditional uncertainty standards. 

 

2.3.2 Determining Type A and Type B Uncertainty Components  
GUM classifies uncertainty components according to their method of determination into type 
A and type B: 

Type A: Evaluation using statistical analysis of measurement series, 

Type B: Evaluation using means other than statistical analysis of measurement series. 

This classification will be explained in Section 3.2. It has some relation to the distinction 
between uncertainty components arising from random effects and uncertainty components 
arising from systematic effects, but there are essential differences. 

With respect to the suggested methodology, GUM does not differentiate between uncertainty 
components due to systematic effects and uncertainty components due to random effects. It 
is however assumed that, as far as possible, recognised systematic errors are either 
eliminated by technical means or corrected by calculation. For the uncertainty budget a 
component remains which accounts for the uncertainty arising from any such action. 

GUM proposes a uniform treatment for all uncertainty components (see Section 2.3.3). The 
reason being that for the error related to an uncertainty component the systematic or random 
character is not unambiguously defined, but depends on the actual case. Thus an error 
based on random effects becomes a systematic error, if the measurement result is entered 
as input into a further measurement. 

Example: The concentration of a radioactive isotope in a reference standard was 
determined by activity measurements. For simplicity, assume that exclusively 
random deviations occur in this measurement. 

  If the unknown content of a sample is then determined in further measurements 
through comparison with this reference standard, its error affects all of these  
measurement results in the same way, thus effecting a systematic error. 

Conversely, systematic errors made by a laboratory in performing specified measurements 
become random errors if the results of a large number of laboratories, exhibiting different 
systematic errors, are collected in an inter-laboratory comparison and summarized in a 
reproducibility standard deviation for the measurement procedure under investigation. 
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2.3.3 Equal Treatment of All Uncertainty Components 

When calculating the combined standard uncertainty, all uncertainty components are treated 
equally. A comprehensive discussion and justification of this procedure is given in Annex E of 
GUM.  

Traditionally uncertainty components arising from random effects and uncertainty 
components arising from systematic effects (for short: random components and systematic 
components) were most often treated in a different fashion as follows: random components 
were added as a root sum of squares (according to Eq. (3.12) in Section 3.3) while the 
systematic components were added linearly (by Eq. (3.16) in Section 3.4). These two sums 
were then added linearly. The intention in doing so was to obtain a "conservative" estimate 
for the uncertainty, i.e. to avoid underestimating uncertainty under any circumstances. A 
possibly excessive uncertainty was then accepted. 

Example: The uncertainty budget for a measurement has yielded the values 3 and 2 as 
random components and 2 and 4 as systematic components (in arbitrary units).  

 Under GUM all these components are added as a root sum of squares (cf. 
Section 3.3, Eq. (3.12)): 

 74.533164494223u 2222 ==+++=+++=  

 However, if the systematic components are added linearly, one gets 

 61.96494223'u 22 =++=+++=  

 i.e. a considerably larger value for the uncertainty. 

Within the framework of GUM protection against underestimation of uncertainty is achieved 
by choosing a suitable coverage factor k for the expanded uncertainty (see Section 3.3). In 
addition, worst-case estimations of standard uncertainty are also reasonable under certain 
circumstances, e.g. comparison with a specification limit (see the remarks in Sections 2.4 
and 3.5). 

 

2.3.4 Expanded Uncertainty 
One option for specifying measurement uncertainty under GUM is the expanded uncertainty 

U(y) = k × u(y) 

i.e. the product of the standard uncertainty u(y) and an appropriate coverage factor k. This 
yields an interval, the so-called confidence interval  

y − U(y) ≤ Y ≤ y + U(y) 

(y: measurement result; Y: true value of measurand; U: expanded uncertainty) 

which can be expected to include the true value Y of the measurand at a defined probability 
p (e.g. p = 95 %). From the viewpoint of GUM, this interval contains the proportion p of all 
values that can be reasonably attributed to the measurand. 

The calculation of the confidence interval assumes the knowledge of the probability 
distribution for the measured values. Since this condition is usually only very imperfectly 
fulfilled, GUM reasonably suggests the choice of a coverage factor k between 2 and 3. A 
default value of k = 2 is recommended, which roughly corresponds to a confidence level p of 
95%. In each case the factor k must be explicitly stated, so that the standard uncertainty u 
can be recovered. 

A statistically more substantially founded procedure for the determination of the coverage 
factor can be found in the Annex G of GUM. 
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Example: In a test report an expanded uncertainty U = 11.48 is given with a coverage factor 
k = 2. From this the standard uncertainty u is obtained as: 

 74.5
2
48.11

k
Uu === . 

 

2.4 Worst-case Estimation of Measurement Uncertainty 
Worst-case estimates of measurement uncertainty can be of interest if for instance the extent 
of measurement uncertainty plays only a subordinate role to further investigations or if 
compliance with certain limit values or specifications has to be checked. In this case, unlike 
the principle of squared addition, the contributions to the uncertainty of the result are 
summed up linearly and if necessary, maximum errors can also be used instead of standard 
uncertainties (see Section 3.5, Eqs. (3.16) and (3.17)) which leads to a simplified 
determination of measurement uncertainty. 

 

 

3 Analytical-Computational Determination of Measurement Uncertainties 
 

3.1 Overview 
The analytical-computational determination of measurement uncertainty is generally a 
complex procedure, including many steps to be followed and requiring consideration of many 
aspects. The main ingredients will be summarized below to provide an overview of the 
procedural steps and the aspects involved as described in the next sections. 

Prerequisite: systematic effects – as far as known – are eliminated or corrected. 

- All relevant uncertainty sources are identified and listed. 

- The contributions of the individual uncertainty sources to the uncertainty of the result 
are estimated and sorted according to significant/insignificant. Insignificant uncertainty 
contributions are neglected. 

- The remaining (significant) uncertainty contributions are quantified as standard 
uncertainties (standard deviations). The following methods are equivalent: statistical 
evaluation of measurement series (type A evaluation) and estimation based on an 
alternative procedure (type B evaluation). 

- The uncertainty contributions are examined for correlations. If necessary, correlations 
are quantified as covariances. 

- The uncertainty contributions are combined using squared addition; if necessary 
covariances are included. 

- To specify the result, the combined standard uncertainty is multiplied by a suitable 
coverage factor (usually k = 2). 

- When determining worst-case uncertainty estimates, the uncertainty contributions are 
added linearly; covariances are omitted. 

Usually measurement uncertainty is not determined individually for single measurement 
results, but as a parameter for a measurement procedure. It then applies to all measuring 
objects and all measuring conditions which were considered when the measurement 
uncertainty was determined. Therefore before use, each case must be checked as to 
whether the measuring object and the measuring conditions comply with the specification for 
the determination of measurement uncertainty. If significant uncertainty components of the 
application are not accounted for in the “procedural uncertainty”, then it is often appropriate 
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to adopt the procedural uncertainty as a component of the measurement uncertainty and to 
supplement the missing uncertainty contributions. 

When determining measurement uncertainty, the cost/benefit ratio has to be considered. It is 
for example better to determine all significant uncertainty contributions with an acceptable 
accuracy instead of determining individual uncertainty contributions with extreme accuracy 
while others are only estimated roughly or ignored completely. 

 

3.2 Classification of Measurement Uncertainty According to Evaluation Type 
According to GUM (see Section 2.3) all uncertainties are expressed by standard deviations, 
independently of whether they are based on random or systematic effects. There are 
essentially two different procedures for the determination of this standard deviation. The 
conventional procedure (type A evaluation) is based on the assumption of a probability 
distribution for the random variation of measurement results. Estimates of the standard 
deviation of this distribution are obtained by replicate measurements and statistical analysis 
of the measured values (measurements series).The alternative procedure (type B evaluation) 
is predominantly used for the estimation of uncertainties, which are due to systematic effects. 
It uses reasonably assumed probability distributions, which account for the available 
information about the quantities concerned, and the standard deviation of these distributions. 
The two classes of uncertainty evaluation are defined in GUM as follows. 

Type A: Evaluation using statistical analysis of measurement series; 

Type B: Evaluation using means other than statistical analysis of measurement series. 

A typical example for a type A evaluation is the determination of an estimate of the standard 
deviation σ of an assumed normal distribution. If x1, x2, ..., xn are the results of repeated 
measurements of the quantity concerned, then the experimental standard deviation s of the 
measurement series {x1, x2, ..., xn} can be used as an estimate of the standard deviation σ of 
this normal distribution.  
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In absence of systematic errors the (arithmetic) mean x̄ of the measurement series {x1, x2, ... 
, xn} is a suitable estimate for the value of the measurand. The standard uncertainty u(x̄) of 
this result is given by 

 ( )
n
sxu =  (3.3) 

If it can be taken for granted that in the measuring range concerned the measurement 
procedure operates free of biases and with a constant statistical spread, then the 
experimental standard deviation of the measurement series {x1, x2, ... , xn} can also be used 
for the estimation of the standard uncertainty of the results of other measurements within this 
measuring range. Here it has to be considered whether the result is a single measured value 
or the mean of several independently measured values. For a single value the standard 
uncertainty is equal to s, while for an (arithmetic) mean of m values the standard uncertainty 
equals s/ m .  
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Note: The factor 1/√ n for the standard deviation of a mean of n individual values 
applies only to individual values independent of each other. The gain in precision is 
smaller for individual values dependent on each other (due to correlated errors), see 
Annex A.5.  

A typical example of a type B evaluation is the transformation of a maximum/minimum 
specification into a standard uncertainty. Suppose that only a minimum value xmin and a 
maximum value xmax are known for the characteristic value (reference value) attributed to a 
reference material. If all values in this interval are equally likely candidates of the true value, 
the mean and the standard deviation of a rectangular distribution with boundaries xmin and 
xmax can be used for the reference value x and its standard uncertainty u(x). 

 ( )
2

xxx minmax +
=  (3.4) 
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However, if there is reason to believe that values in the centre of the interval are more likely 
than values at the boundaries, then e.g. a symmetrical triangular distribution with boundaries 
xmin and xmax can be chosen instead of the rectangular distribution (uniform distribution). This 
gives  
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2
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=  (3.6) 
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These and other examples of type B evaluation are contained in GUM, Sections 4.3 and 4.4. 

Note: Until recently, almost exclusively type A procedures have been used for the 
evaluation of uncertainties. Since these procedures are not universally applicable, often 
significant uncertainty components were either not taken into account properly or even 
not at all. The introduction of type B procedures serves the purpose to remedy this 
deficiency and to facilitate the use of expert knowledge for the estimation of uncertainty 
components. 

In general, the uncertainty of a measurement result is made up from several components, 
part of which was evaluated through type A, the other part through type B procedures. 
Therefore, the classification according to type A or type B is usually only applicable for 
individual uncertainty components. 

 

3.3 General Method for Determination of Uncertainty 
The uncertainty of a measurement result usually consists of several components. 
Accordingly, the determination of the measurement uncertainty is also usually a complex 
procedure, which comprises several steps. 

In this section a generally applicable succession of steps will be described. The formulation 
selected here refers to measurement procedures, but it can easily be transferred to test 
procedures and analytical procedures. 

Frequently occurring uncertainty sources and data evaluation techniques are described in 
the Annex. 

 



20 / 50 Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 

Step 1: Specification of the measurand and the measurement procedure 

In this step the quantity to be measured, y, and the procedure for the determination of its 
value are specified. In addition to the actual measurement, this procedure comprises all 
preparative steps, e.g. sampling and sample preparation, the conditions which have to be 
maintained during preparation and measurement as well as data processing.  

Step 2: Definition of the input quantities, identification of the uncertainty sources 

In this step the input quantities xi (i = 1, 2…, N), are defined, on which the result depends. As 
a basis for this, all potential uncertainty sources for the result are identified (see Annex A.1). 
The input quantities are defined in such a way that the effect of all relevant uncertainty 
sources is covered. 

The input quantities may be: 

- Constitutive measurands of the target quantity, e. g. mass and volume, when density 
as a quotient of these two is determined; 

- Parameters, i.e. quantities that are not the subject of the measurement, but have an 
effect on the result, e.g. pressure and temperature of the sample in a volume 
measurement; 

- Reference quantities, i.e. quantities used for calibration or for correction of systematic 
errors, e.g. values embodied by standards or reference materials; 

- Characteristics for the input/output behaviour of individual steps of the complete 
measurement procedure, e.g. efficiencies of sample preparation procedures, correction 
factors for biases observed, parameters of a calibration curve etc.; 

- Other quantities used during evaluation, for which data are taken from the literature, 
e.g. natural constants or materials characteristics. 

Uncertainties of the input quantities are sources for the uncertainty of the measurement 
result. Conversely, the effect of each uncertainty source can be described by means of 
suitable input quantities (e.g. efficiencies or correction factors). Such a description is 
assumed in the following. For this purpose the input quantities must be defined in such a way 
that the effect of all potential uncertainty sources is accounted for. Here the use of flow 
charts is recommended. The use of efficiencies, correction factors or the like as input 
quantities for the modelling of process steps is dealt with in Annex A.3. 

Summing up, the task within this step is to develop a mathematical model for the complete 
measurement procedure, y = F(x1, x2, ..., xN), i.e. an equation or an algorithm, which describe 
the measurement result as a function of all relevant input quantities.  

Step 3: Determination of significant uncertainty sources 
In this step the identified sources of uncertainty are assessed as to whether their contribution 
to the uncertainty of the result is significant. To this end, the uncertainty contribution of an 
input quantity is approximately calculated as a product of a rough estimate of the standard 
uncertainty associated with this quantity (e.g. accounting for the variability to be expected 
under given conditions) and the sensitivity with which the result depends on the input 
quantity. 

If two contributions differ by a factor of 1/5, then the smaller contribution can usually be 
neglected in relation to the larger one. 

Note: Because of the squared addition, a standard uncertainty which is smaller by a 
factor of 1/p, contributes a proportion of approx. 1/(2p2) of the larger standard 
uncertainty to the combined uncertainty of the result. For p = 5 this proportion amounts 
to approximately 2 %. However, small uncertainty contributions cannot be neglected if 
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they occur in large numbers or if correlations are present which entail a linear addition 
of uncertainty contributions instead of the squared addition. 

Step 4: Quantifying significant uncertainty sources 

In this step the contributions of significant uncertainty sources are quantified by means of the 
associated input quantities xi (i = 1, 2…, N). For each of these, the standard uncertainty u(xi) 
is determined (depending upon available experimental data) either as the standard deviation 
of the values of a measurement series (type A evaluation) or as the standard deviation of a 
reasonably assumed probability distribution (type B evaluation), e.g. a rectangular 
distribution between experimentally established extreme values. 

Note: Type A evaluations apparently have the advantage of greater objectivity. 
However, experimental standard deviations of very short measurement series, which 
are quite common in practice, provide such inaccurate estimates of standard 
uncertainties that an experience-based expert estimate (type B evaluation) may be 
preferred. For example the relative standard deviation of an experimental standard 
deviation from 5 values amounts to approximately 36 % and for 10 values it is still 
24 %. This holds for values from a normal distribution; in the case of deviations from 
the normal distribution the “uncertainty of uncertainty estimates” may be even worse. 

Furthermore, the sensitivity coefficients ci for the input quantities xi are determined. These 
coefficients specify how the result y = F(x1, x2, ..., xN)  changes with variations of xi. They are 
given by the derivatives  
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In the case of simple model functions for the result y (sums, products etc.) the derivatives 
can be obtained by differential calculus. If model functions are more complicated, numerically 
calculated difference quotients can be used instead of derivatives (see Annex A.4). If the 
influence of an input quantity xi on the result cannot be described by a model, experimentally 
determined difference quotients will be used instead 
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The contribution of the uncertainty of an input quantity xi to the combined standard 
uncertainty of the result y is obtained as a product ui = ci × u(xi) of the standard uncertainty 
u(xi) and the sensitivity coefficient ci. 

Step 5: Consideration of correlations 

This step first checks whether there are correlations between uncertainty contributions. Such 
correlations arise when errors of two input quantities xi and xk are dependent on one another 
and behave either sympathetically or antagonistically. Correlations can be expected if the 
input quantities concerned depend on each other or both depend on a third quantity. This 
can refer to the quantities themselves, or to the procedures for the determination of their 
values. 

Example: A correlation exists, if the same standard is used for the calibration of two 
different measurements, or if two volumetric solutions are prepared by dilution 
from the same parent solution. An error of the standard then affects the results of 
the two measurements in the same direction. Likewise, an error of the parent 
solution formulation similarly affects the concentration of the two volumetric 
solutions. 

In principle, correlations should be avoided to the largest possible extent. That is, preferably 
independent input quantities and independent procedures for the determination of their 
values should be used. If this is not possible, the correlations must be quantified by 
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appropriate covariances and taken into account in the calculation of the combined standard 
uncertainty of the result. 

Correlations contribute as products uik = ci × ck × u(xi, xk) of the covariance u(xi, xk) and the 
relevant sensitivity coefficients ci and ck to the combined standard uncertainty of the result y. 

The determination of covariances is briefly discussed in Annex A.6 and in greater detail in 
the GUM and DIN 1319-4. The following case is easy to handle and sufficient for many 
purposes: Two input quantities xi and xk depend on the same quantity z. The covariance of xi 
and xk is then u(xi,xk) = (∂xi/∂z)(∂xk/∂z)u(z)2. Here u(z) is the standard uncertainty of z while 
(∂xi/∂z) and (∂xk/∂z) are the sensitivity coefficients for the dependence of the quantities xi and 
xk on z. If two input quantities depend on several common quantities, then the covariance is 
the sum of the respective products.  

Step 6: Calculating the combined standard uncertainty  

In this step the contributions determined in the preceding steps are combined into the 
standard uncertainty of the result. In the most general version, i.e. when correlations 
between all input quantities are considered, this combination is performed according to: 
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In greater detail, this equation reads 
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In most applications there are no correlations between the input quantities or the contribution 
of the correlations can be neglected. Then Eq. (3.11) reduces to 
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The standard uncertainty of the result u(y) is obtained as the positive square root of the sum 
calculated by equation (3.11) or (3.12).  

Note: Equation (3.12) is the usual form of the Gauss "error propagation law" for 
uncorrelated errors. Eq. (3.11) is its generalisation, accounting for correlations. Both 
equations are based on a series expansion of the result in terms of powers of the 
deviations of the input quantities from their stipulated values, which is truncated after 
the linear term. If there are pronounced non-linearities, this approximation may be 
insufficient. In this case either consecutive terms of the series expansion (higher 
powers of the deviations) must be included, or other evaluation methods (numerical 
simulation etc., see Annex A.4.2) must be used. 

If the relation between the result y and the input quantities xi, can be expressed by simple 
formulas, then the sensitivity coefficients can be determined by differential calculus.   

Example: For sums y = ax1 + bx2 and differences y = ax1 − bx2  
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In all other cases it is more appropriate to approximate the sensitivity coefficients by finite 
differences. Both these calculations and the combination by squared addition can be carried 
out very convenienty using a spreadsheet program, see Section A.4.1.   

The covariances u(xi,xk) in Eqs. (3.11) are closely connected with the standard uncertainties 
of the input quantities concerned as follows: 

 ( ) ( ) ( ) ( )kikiki xuxux,xrx,xu ⋅⋅=  (3.13) 

Here r(xi,xk) is the so-called coefficient of correlation; its value is between -1 and 1. The value 
1 indicates that the input quantities vary sympathetically while -1 indicates that they vary 
antagonistically, the value 0 indicates the absence of correlation. If all input quantities are 
totally correlated (r = 1), the combined standard uncertainty results as a linear sum u(y) = Σui  
of uncertainty contributions. In the case of completely uncorrelated input quantities the 
uncertainty contributions are added quadratically as  u(y)2  = Σui

2. The squared addition 
usually results in considerably smaller values for the combined standard uncertainty u(y) 
than the linear addition. Therefore, linear addition can be used for worst-case estimation of 
combined standard uncertainties, without checking for correlations. Linear addition is not 
suitable as a procedure for the determination of uncertainties to be used as input data for the 
determination of the uncertainty of other quantities, because it usually overestimates the 
combined standard uncertainty. 

Step 7: Definition of coverage factors 

The uncertainty of the result can be specified alternatively either as a standard uncertainty 
u(y) or as an expanded uncertainty U(y) = k × u(y), i.e. as a product of the standard 
uncertainty and a suitably chosen coverage factor. 

The expanded uncertainty is selected in order to define a range which is expected to contain 
the true value of the result with high probability. 

If there are no comprehensible reasons for another choice, a value between 2 and 3 should 
be selected for k; k = 2 is recommended as a default value. If sufficient knowledge about the 
probability distribution of the result is available, then k can be calculated as a "confidence 
factor" at a fixed confidence level. For this purpose a confidence level of 0.95 (95 %) is 
recommended. 

For such calculations the number of effective degrees of freedom is needed. It can be 
calculated from the standard uncertainties and the degrees of freedom of the distributions for 
the values of the input quantities, see GUM, Section G.4. 

 

3.4 Instructions on the Use of Uncertainty Budgets 

The analytical-computational determination of measurement uncertainty based on a detailed 
uncertainty budget is particularly suitable for measurement procedures with a broad 
application range, i.e. with a substantial range of variation of the measuring objects and the 
measuring conditions. Then it is worth effort to compile a detailed uncertainty budget, in 
which the measurement uncertainty is calculated as a function of the relevant influence 
quantities – in particular the property of the measuring objects and the measuring conditions. 

For measurement procedures with a narrow range of application – measuring objects with a 
small range of variation, standardised measuring conditions – procedures described in 
Sections 4 and 5 for the estimation of measurement uncertainty using within-laboratory 
validation data and inter-laboratory comparison data offer a good alternative.   

Uncertainty budgets are valuable diagnostic tools in the development and optimisation of 
measurement procedures. For this purpose the following form of Eq. (3.10) is particularly well 
suited (for simplification without correlations): 
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Variance terms ui
2 / u(y)2 indicate which influence quantities contribute significantly to the 

combined uncertainty of the measurement result, and which influence quantities contribute 
only marginally. It is only worth expending effort to improve the accuracy for quantities with 
significant influence, while this would be a wasted effort for quantities with marginal 
influence. 

Another useful form of the principal equation for uncertainty propagation (for simplification 
without correlations) is: 
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The coefficients di indicate, how strongly the relative uncertainty of an influence quantity 
affects the relative uncertainty of the result. 

 

3.5 Worst-case Estimation 
The procedure described in Section 3.3 aims to determine the measurement uncertainty with 
appropriate accuracy. In individual cases, however, a worst-case estimate (i.e. an upper 
bound) can be of interest instead of an exact value for the measurement uncertainty, e.g. if 
the magnitude of the measurement uncertainty plays only a subordinated role in further use 
of the result, or if compliance is to be ensured with given specifications or limit values. 

For worst-case estimation of measurement uncertainty the procedure described in Section 
3.3 can be simplified as follows: 

- The uncertainty contributions ui = ci × u(xi) of the input quantities are added linearly; the 
correlation contributions uik = ci × ck × u(xi,xk) are omitted.  

- In the uncertainty contributions ui = ci × u(xi) of the input quantities, maximum values of 
the possible errors ⏐Δ xi⏐max may be used instead of the standard uncertainties u(xi).  

With these simplifications the following two equations are obtained, which can be used 
alternatively for the calculation of worst-case estimates of measurement uncertainty. 
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4 Estimation of Measurement Uncertainties using Within-laboratory Validation 
and Quality Control Data 

 

4.1 General 
A direct method for measurement uncertainty determination is to apply the measurement 
procedure concerned to appropriate reference objects (standards, material measures, 
reference materials) and compare the results obtained under within-laboratory reproducibility 
conditions (see Section 2.2) with the known reference values. A variant, which follows the 
same principle to a large extent, consists of applying the measurement procedure in parallel 
with a reference procedure to suitable measuring objects and comparing the results of the 
procedure to be evaluated with those of the reference procedure. In both variants the 
measurement uncertainty is determined according to the basic principle accuracy = trueness 
+ precision from characteristic values of trueness (estimates of bias) and characteristic 
values of precision (estimates of random variability). 

The protocol described below consists of the following steps:  

• Investigation of precision; 

• Investigation of trueness (bias); 

• Correction of bias (if significant); 

• Determination of measurement uncertainty (including correction terms). 

In Section 4.2 the protocol using one single reference object is described as the simplest 
case. If more than one reference object is needed for technical reasons, e.g. for the 
determination of uncertainty over a wide measuring range, then the protocol described here 
should be extended accordingly. Protocols suitable for this purpose are described in Section 
4.3. 

Normally, investigations of precision and bias of a measurement procedure are carried out 
on a regular basis (and additionally if necessary). It is important to ensure that the data of a 
current investigation are comparable with the data from preceding investigations: 

• If the data are compatible with one another, they can be combined in order to improve 
the statistical basis of the estimated values concerned (average deviations, average 
recovery rates and their standard deviation). 

• Otherwise the data comparison may be used as a diagnostic tool to resolve the observed 
discrepancies.  

For this reason, measurements on reference objects should always be carried out and be 
evaluated in the same manner – without considering corrections determined beforehand. 

 

4.2 One-Point Protocol 
The protocol described here is applicable only if it can be taken for granted that the result 
obtained on the reference object can be considered as a representative point for the entire 
measuring range (in other words for all of the measuring objects and/or measuring tasks). 
Otherwise either the measuring range must be restricted accordingly or a multi-point protocol 
described in Section 4.3 should be used. 

The reference object will be measured repeatedly (at least n = 6 times) under appropriate 
within-laboratory reproducibility conditions (see Section 2.2), which correspond to those 
employed in normal operation. Concerning these measurements, the following quantities will 
be used later on: 
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xref Reference value of the measurand; 

u(xref) Standard uncertainty of the reference value; 

xmeas Measured value obtained by the measurement procedure under 
investigation; 

x̄meas Mean value of n measured values xmeas; 

smeas Standard deviation of n measured values xmeas; 

Δ Mean deviation (Δ = x̄meas − xref) from the reference value; 

Q Mean recovery rate (Q = x̄meas / xref) of the reference value. 

The first step is to investigate whether the standard deviation of the measurement series is 
compatible with the previously determined and monitored standard deviation of the 
measurement procedure (Section 4.2.1). Subsequently, the mean value of the measurement 
results is compared with the reference value in order to investigate potential bias. The bias 
observed will be assessed as "inacceptable", "significant but acceptable" or "insignificant" 
(Section 4.2.2). Appropriate actions will be taken (Section 4.2.3) depending on the results of 
the assessment: 

 

Result Inacceptable Significant but acceptable Insignificant 

Action Examine and amend the 
measurement procedure 
to remove/reduce bias 

Apply a correction for bias 

or 

Introduce an additional 
uncertainty contribution to 
account for uncorrected 
bias  

Introduce an additional 
uncertainty contribution 
to account for 
uncorrected bias 

Table 3.1 Results and actions with regard to bias 
 
As a result of the investigation one obtains an estimate of the uncertainty of the 
measurement procedure (including corrections, where applicable) (Section 4.2.3). 

 

4.2.1 Investigation of Precision 
As a preliminary investigation the precision of the measurement procedure is determined 
under within-laboratory reproducibility conditions (see Section 2.2), which should correspond 
to the normal operation conditions. This may be done using the standard deviation obtained 
from regular measurements on a suitable measuring object (precision control chart), or an 
appropriate pooled standard deviation when several measuring objects or several measuring 
instruments are utilised. This precision will thereafter be called "procedural precision". For the 
associated standard deviation the designation "procedural standard deviation" and the 
symbol sV will be used. 

Note: Combination (pooling) of two standard deviations is performed as follows: 
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Here n1 and n2 are the numbers of measured values, from which s1 and s2 were 
calculated.   

The standard deviation smeas for the measurement series on the reference object should 
agree with the standard deviation sV of the procedure, or at least smeas should not be 
significantly larger than sV. In case of doubt this can be checked using the F-test. 
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Note: The F-test examines whether two standard deviations differ significantly. To this 
end the squared quotient (s > / s <)2 of the larger and the smaller of the two standard 
deviations is compared with the tabulated value of the F-distribution for the respective 
degrees of freedom and the desired level of significance. The F-test is described in 
almost every text book on statistical data evaluation, see e.g. A. Bowker, G. 
Liebermann, Engineering Statistics, 2nd edition, Prentice Hall Inc. (1972). 

 

4.2.2  Investigation of Bias 
If the precision at the reference object is compatible with the procedural precision as 
determined before, then the deviation of the measured values obtained on the reference 
object from the reference value is examined and assessed. In principle this can be done for 
each individual measured value. However, for the sake of simplicity the mean deviation, i.e. 
the deviation of the mean value will be examined here. It will be first checked whether the 
deviation of the mean value is acceptable or not. 

An inacceptable deviation indicates serious deficiencies of the measurement procedure, 
which require a detailed investigation of all process steps and devices concerning sources of 
error, and appropriate corrective actions to eliminate or at least reduce the observed bias. 

An acceptable deviation matches the expectation regarding the trueness of the procedure 
and does not require any revision of the measurement procedure. 

If the deviation of the mean value is acceptable, then it will be tested for (statistical) 
significance. 

A deviation is considered to be significant, indicating significant bias, if the magnitude 
(absolute value) of the deviation of the mean value x̄meas from the reference value xref is 
larger than twice the standard uncertainty of this deviation, 

 2
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Otherwise the deviation is insignificant. 

Note: Instead of checking whether the mean deviation Δ is significantly different from 
zero, it can be checked whether the mean recovery rate Q is significantly different from 
unity. These two tests are in principle equivalent. 

 

4.2.3  Dealing with Observed Bias 
 
Depending on the data, significant deviations will be either corrected, or taken into account in 
the uncertainty. Insignificant bias is not corrected but accounted for in the uncertainty. 

Correction for Bias 
In the case of significant bias a one-point correction is only reasonable if it can be taken for 
granted that the (absolute or relative) bias is constant over the entire measuring range. 

If a constant absolute deviation can be expected, the mean deviation Δ = x̄meas − xref 
observed will be subtracted from the measurement result.  

 Δyy meascorr −=  (4.2) 

Here ymeas is the measurement result on a test object and ycorr is the corrected measurement 
result. 

If a constant relative deviation can be expected, the correction will be carried out using the 
mean recovery Q = x̄meas / xref as follows. 
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Q

y
y meas

corr =  (4.3) 

The correction can be made either by adjustment of the measuring instrument (alignment of 
zero point and/or sensitivity) or by calculation.  

The standard uncertainty of the corrected measurement result is calculated acording to the 
rules of uncertainty propagation (see Section 3.3). For a correction according to Eq. (4.2) this 
gives 
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Here the procedural standard deviation sV  is used for the standard deviation of the 
uncorrected measurement result. For simplification smeas can also be replaced by sV. 

For a correction according to Eq. (4.3) a corresponding equation applies for the relative 
standard uncertainty, urel(y) = u(y)/|y|. 
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Here srel_V is the relative procedural standard deviation and srel_meas = smess / x̄meas the relative 
standard deviation of the measurement results obtained on the reference object. Also here 
srel_meas

 can be replaced by srel_V for simplification. 

If the measurement result ymeas is a mean value of m individual measured values, then sV
2 

has to be replaced with sV
2 / m in Eq. (4.4). The same applies to Eq. (4.5).  

Allowance for Bias in the Uncertainty Budget 
If direct transfer of the (absolute or relative) bias determined on the reference object to the 
test objects under investigation is doubtful, then one should rather refrain from a correction. 
Instead the (mean) deviation determined on the reference object should be included in the 
uncertainty budget. To this end the procedure of Lira and Wöger is recommended [reference 
at the end of this section]. This gives 

 ( ) ( ) ( )2
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uncorr yyyuyu −+=  (4.6) 

In the equation above the first term accounts for the uncertainty that would be obtained if the 
correction were carried out, while the second term accounts for the observed deviation. This 
procedure also applies when the (mean) deviation on the reference object is insignificant and 
therefore no correction is carried out. 

Based on Eq. (4.2) the following uncertainty budget is obtained: 

 ( ) ( ) ( ) ( ) ( )2
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Eq. (4.7) assumes that the uncertainty is approximately constant in the measuring range 
considered. However, generally uncertainty increases with increasing values of the 
measurand. Assuming proportional growth, an analogue of Eq. (4.7) can be derived from Eq. 
(4.3) which is applicable when relative uncertainty is approximately constant. Often however 
both approaches will be doubtful. Then the following estimate, extrapolating the uncertainty 
determined on the reference object both to smaller and larger values of the measurand may 
be used. 
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  (4.8) 
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Here sV is the procedural standard deviation valid for ymeas ≈ x̄meas. 

The extrapolation of the uncertainty determined on the reference object according to 
Eqs. (4.8) is based on the following empirical fact: With decreasing values of the measurand, 
uncertainty also decreases or remains constant at most. With increasing values of the 
measurand, uncertainty also increases, at most proportionally to the value of the measurand. 
However this rule does not apply without any exceptions. Therefore the applicability of the 
extrapolation using Eqs. (4.8) must be checked in cases of doubt.  

Reference: Lira, I.H. und Wöger, W., Evaluation of the uncertainty associated with a 
measurement result not corrected for systematic effects, Meas Sci Technol 1998, 9,  
p. 1010-1011. 

 

4.3 N-Point Protocol (N ≥ 2) 
4.3.1 Interpolation 
If the conditions for the application of the one-point protocol are not fulfilled, several 
reference objects must be used for investigating bias and, if necessary, for determining a 
correction. If a linear relationship can be assumed between measurement errors and values 
of the measurand, two reference objects are sufficient for these purposes. 

The quantities and symbols are the same as in Section 4.2, up to an additional index A and B 
to characterise quantities for the respective reference objects A and B. For simplicity it is 
assumed that the same number n of measured values is available for both reference objects. 

Investigation of Precision 
The test will be performed on both reference objects based on the protocol described in 
4.2.1. If the reference values xAref and xBref are close to each other, the same procedural 
standard deviation sV can be used at both reference points. Otherwise two appropriate 
standard deviations sAV and sBV must be determined and used in the protocol. If the 
procedural standard deviation increases proportionally to the value of the measurand, the 
test will be carried out using relative standard deviations. Then a single value srel_V of the 
relative procedural standard deviation is sufficient.   

Investigation of Bias 
The test is carried out on both reference objects under the protocol described in 4.2.2. If an 
inacceptable bias is found on a reference object, a detailed investigation of all process steps 
and devices is necessary for sources of error and appropriate corrective actions. 

If the bias found on both reference objects is acceptable, it will be tested for significance. In 
case of significance on one or both reference objects, depending on available data, either a 
correction is carried out or the deviation determined is taken into account in the uncertainty 
budget. Insignificant bias on both reference objects is not corrected but accounted for in the 
uncertainty budget. 

Correction for Bias 

Correction of observed bias is carried out using two correction parameters p and q according 
to the following equation. 

 meascorr yqpy ⋅+=  (4.9) 

The correction parameters are determined in such a way that ycorr for the two reference 
objects agrees with the corresponding reference values. The calculation gives  
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The standard uncertainty of corrected measurement results is calculated according to the 
rules of uncertainty propagation from the standard uncertainties and standard deviations 
s(ymeas), u(xAref), u(xBref), s(x̄Ameas) = sAmeas/ n , s(x̄Bmeas) = sBmeas/ n  of the quantities involved 
as follows. 
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For the standard deviation s(ymeas) of uncorrected measurement results the appropriate 
procedural standard deviation will be used. Here it has to be considered whether the result is 
defined as a single measured value or as the mean of a specified number of measured 
values. If the measurement result is a single value, s(ymeas) = sV holds; if the measurement 
result is the mean of m values, s(ymeas) = sV / m  holds. 

Allowance for Bias in the Uncertainty Budget 
If a correction using Eqs. (4.9) - (4.11) is doubtful, or if the determined deviations are 
insignificant, then no correction is made. Instead, the deviations observed on the reference 
objects are included in the uncertainty budget. As in Section 4.2, Lira and Wöger’s procedure 
is recommended: 

 ( ) ( ) ( )2
meascorr

2
corr

2
uncorr yyyuyu −+=  (4.13) 

For the purpose of this calculation Eqs. (4.9) - (4.12) have to be substituted into Eq. (4.13). 
Due to its complexity, the resulting equation for the uncertainty u(yuncorr) will not be presented 
here. 

 

4.3.2 Least Squares Fit 
For a wide measuring range and a large variety of measuring objects, two reference objects 
will often not be enough. Already in a linear case, reliable estimation of bias and appropriate 
correction require at least three reference objects. The evaluation of such a multiple 
comparison follows a different pattern than in the preceding cases because the number of 
reference objects is larger than the number of correction parameters to be determined (least 
squares fit instead of interpolation). 

In the following the determination a "correction line" is dealt with as the most frequent 
application. However for extended measuring ranges nonlinear "correction curves" may be 
necessary. Their computational treatment requires methods of nonlinear regression, e.g. 
using polynomials. 

Following the N-point protocol, N reference objects are measured and the resulting set of 
data, consisting of the reference values and the corresponding measured values, is 
evaluated by means of linear regression. For this evaluation most often the standard form of 
the method of least squares can be used. The conditions for this are as follows: 

• The uncertainty of the reference values is significantly smaller than the dispersion of the 
measured values. 
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• The dispersion of the measured values is approximately constant in the measuring range 
considered. 

• Replicate measured values on the same reference object approximately follow a normal 
distribution. 

For the calculation, the reference values are selected as values of the independent variable 
xref and the measured values as values of the dependent variable xmeas. The result is a best fit 
straight line, i.e. a linear function  

 refmeas xx ⋅β+α=  (4.14) 

If there is no bias, α = 0 and β = 1 hold. If α ≠ 0, there is an additive bias, β ≠ 1 indicates a 
multiplicative bias. If so required, bias correction of measurement results obtained on 
comparable measuring objects is carried our according to the following equation: 

 
β

α−
= meas

corr
y

y  (4.15) 

The uncertainty of corrected measurement results is calculated according to the procedures 
described in Annex A.2 from the standard deviation s(ymeas) and the uncertainty of the 
parameters of the best-fit line, u(α ), u(β ) and the covariance u(α β ). 

 

 

5 Estimation of Measurement Uncertainties using Inter-laboratory Comparison 
 Data 
 

5.1 Inter-laboratory Comparisons for Method Validation  
For standard test procedures, trueness and precision are usually determined by an inter-
laboratory comparison (see ISO 5725-2). Among the performance characteristics obtained in 
this manner, the so-called "reproducibility standard deviation" (sR) is a suitable estimate for 
the measurement uncertainty. Since this already comprises systematic effects due to 
different ways of operation in the laboratories involved, an additional uncertainty contribution 
accounting for systematic effects is normally not necessary. 

Note: A “repeatability standard deviation“ alone, determined by an inter-laboratory 
comparison (sr), or determined within the laboratory by replicate measurements at the 
same conditions, is not normally a suitable uncertainty estimate, since it excludes 
major uncertainty contributions. 

In the International Technical Specification ISO/TS 21748 Guide to the use of repeatability, 
reproducibility and trueness estimates in measurement uncertainty estimation of May 2003 
the exact conditions are identified under which a laboratory can use the reproducibility 
standard deviation sR assigned to a standard test procedure as an estimate for the 
measurement uncertainty of results obtained using this procedure. Essentially the laboratory 
must prove 

(a) that the tests are carried out in conformity with the standard, and in particular 

(b) that the measuring conditions and measuring objects agree with those in the inter-
laboratory comparison, and 

(c) that for its implementation of the test procedure, trueness and precision are compatible 
with the inter-laboratory comparison data. 

Requirement (c) means that the laboratory has to check trueness and precision (see Section 
4) for compatibility with the inter-laboratory comparison data sr and sR. For this purpose for 
instance, the laboratory can perform replicate measurements on a suitable reference object. 
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If nlab is the number of measurements, slab the standard deviation of the measurement series 
and Δ = x lab – xref the deviation of the mean value of the measurement series from the 
reference value, then compatibility is given if: 

rlab ss ≈  and 
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n
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2 −+≤Δ . 

 

5.2 Inter-laboratory Comparisons for Proficiency Testing 
If the laboratory has successfully participated in an inter-laboratory proficiency test, it may 
utilise the results for estimating the uncertainty for the test procedure used. Some simple 
approaches how this could be done are described below. A similar approach is given in the 
NORDTEST Technical Report 537 Handbook for calculation of measurement uncertainty in 
environmental laboratories. 

Alternatively, proficiency tests offer the possibility to check the validity of measurement 
uncertainty estimates obtained otherwise. 

a) Reference value given 

A reference value (target value) xref is given by the organizer of the inter-laboratory 
comparison including the standard uncertainty u(xref). The laboratory has submitted nlab 
measured values with a mean value x lab and standard deviation slab. From these data, the 
following performance parameters are calculated, analogously to the calculation in Section 
4.2: 

• the difference ΔRV between the mean value of the measured values of the laboratory and 
the reference value 

reflabRV xx −=Δ  

• the standard uncertainty u(ΔRV) of this difference 
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In principle, these parameters could be utilised for a correction in accordance with Section 
4.2, Eqs. (4.2) or (4.3). However, often the transfer of a bias determined in the "snapshot" of 
a single inter-laboratory comparison to other measurements will be doubtful. Then one 
should rather refrain from a correction. Instead, the (mean) deviation from the reference 
value should be included in the uncertainty budget as in Section 4.2 by Eqs. (4.7) or (4.8).  

Note: If a laboratory has already determined the measurement uncertainty for the 
measurement procedure under consideration, then the results of inter-laboratory 
comparisons can be used for checking this measurement uncertainty. To this end, the 
difference ΔRV between the mean value of the laboratory values and the reference 
value is tested for significance. For this purpose the measurement uncertainty u( x lab) 
of this mean value is needed. Most often this will include uncertainty contributions due 
to systematic effects, with the consequence that the notorious factor 1/√n is usually not 
applicable, see Annex A.5. 

If the laboratory has participated in repeated PT rounds (for comparable tests), the 
uncertainty estimates obtained from the individual rounds should be compared and 
combined, if compatible. Combination would be done by pooling (taking mean squares) of 
the uncertainty estimates concerned. This approach is used in the NORDTEST Handbook, 
where results from at least 6 repeated PT rounds are required.  
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b) Reference value not given  

In this case, as a substitute, a reference value is determined from the results of the 
participants by the organiser of the inter-laboratory comparison. Usually this will be the mean 
value <xRV> of the results of all participants (outliers removed if necessary) with an 
uncertainty given by the standard deviation sRV / RVn  of this mean value. Here sRV is the 
standard deviation of the laboratory means which contribute to the reference value, and nRV 
is their number. From these data the following parameters of the (limited) trueness control 
can be calculated:  
• the difference ΔRV between the mean value of the measured values of the laboratory and 

the (substitute) reference value  

 RVlabRV xx −=Δ  

• the standard uncertainty u(ΔRV) of this difference   
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Based on these data, the same approach is applied as in case a), but due to lack of 
assurance of the trueness of the (substitute) reference value, a correction should not be 
made. Instead, the (mean) difference between the results of the laboratory and the reference 
value should be included in the uncertainty budget as in Section 4.2 according to Eqs. (4.7) 
and (4.8).  

c) Procedure-specific Inter-laboratory Comparison 

Procedure-specific inter-laboratory comparisons are often evaluated according to ISO 5725-
2. Then, under suitable conditions (see Section 5.1), the reproducibility standard deviation 
can be used directly as an estimate of the measurement uncertainty. It accounts for both 
random and systematic influences, as far as these are due to different ways of operation of 
the laboratories involved, but not for “method bias” conditional upon the measurement  
procedure. 

Other evaluations may require the standard deviation of the individual measured values of all 
participants (outliers removed if necessary) instead of the reproducibility standard deviation. 
If only the standard deviation of the participant mean values is available, this can be 
combined with the standard deviation determined in the laboratory under within-laboratory 
reproducibility conditions. 

 

5.3 Inter-laboratory Comparisons for Reference Material Certification Inter-
laboratory Comparisons for Reference Material Certification 

If the laboratory has participated successfully with the procedure concerned in an inter-
laboratory certification study, the difference between the result of the laboratory – usually the 
mean value obtained from a number of replicate measurements – and the certified value can 
be used for the evaluation of trueness. 

The procedure is in principle the same as in Section 5.2, whereby the certified value and its 
uncertainty take over the role of the reference value and its uncertainty. The deviation from 
the certified value is considered acceptable if the result of the laboratory is included in the 
calculation of the certified value, but larger deviations may also be acceptable in view of 
routine applications. As to how the deviation should be taken into account, both correction 
and inclusion in the uncertainty budget may be considered, but in case of doubt the approach 
to include an additional allowance in the uncertainty budget should be preferred. 
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6 Hybrid Strategies for Evaluation of Measurement Uncertainties 
 

If influential factors occur in a measurement that were not considered during validation of the 
measurement procedure (within the laboratory or in the inter-laboratory comparison), the 
estimate of the uncertainty determined in validation must be supplemented accordingly. This 
amounts to a hybrid strategy for uncertainty evaluation where, as far as possible, the 
combined effect of influential factors is determined using data from validation studies, and 
necessary additions are made by modelling the effect of residual factors on the result and 
using uncertainty propagation (squared addition). This strategy combines the use of existing 
data from validation studies with the flexibility of the model-based evaluation of individual 
uncertainty contributions. 

If the reproducibility standard deviation sR determined in an inter-laboratory comparison is 
used as a basis for estimating the uncertainty of the results obtained using a standard test 
procedure (see Section 5.1), and if the test conditions or the test objects substantially deviate 
from those in the inter-laboratory comparison, the effect of these deviations must be 
estimated and combined with the reproducibility standard deviation. For this purpose the 
following schematic equation applies: 

 ∑+= 2
other

2
Rcomb usu  

Conversely, an uncertainty budget can be checked for completeness by comparing the 
calculated uncertainty with the dispersion of the results of replicate measurements, also 
including bias if suitable reference objects are available, and supplemented as necessary. 

In any such uncertainty evaluation, an essential step is a detailed analysis of the influence 
quantities (sources of uncertainty) with the aim of differentiating those influence quantities, 
whose uncertainty contributions are included in a given performance characteristic, e.g. a 
reproducibility standard deviation sR, from those influence quantities which are not included 
and therefore must be accounted for in some other way. 

Note: The approach utilised in several examples of the EURACHEM/CITAC Guide 
Quantifying Uncertainty in Analytical Measurement to include a standard deviation 
accounting for the overall “procedural dispersion” in a detailed uncertainty budget is 
counterproductive in view of a comparison between uncertainty budget and precision 
data, and tends to overestimate the uncertainty by double counting. 

 

 



EUROLAB Technical Report 1/2006 – Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results 35 / 50 

7 Specification and Documentation of Measurement Uncertainty 

 

Calculated or estimated measurement uncertainties are stated, together with the value y of 
the measurand, either as a standard uncertainty u(y) or as an expanded uncertainty 
U(y) = k × u(y). If the expanded uncertainty is given, then the coverage factor used also has 
to be stated and, as far as possible, the respective estimated level of confidence. 

Both standard uncertainty and expanded uncertainty can be stated as absolute values or, 
divided by the absolute value of the measurand, as a relative value (e.g. in per cent).   

Worst-case uncertainty estimates are stated, together with the value y of the measurand, as 
a numerical value ⏐Δy⏐max or in the form of an inequality for the measurement error ⏐Δy⏐. 
The specification must exclude any confusion with standard uncertainties or expanded 
uncertainties. 

The evaluation of measurement uncertainty must be documented comprehensively and in 
sufficient detail as to enable traceability of all major steps. If substantial uncertainty 
contributions were not taken into account, this circumstance must be stated and explained.  
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Annex 

This annex describes common sources of uncertainty (A.1) and common data evaluation 
methods (A.2 – A.6). 

In the Sections A.2 to A.6 a distinction will be made in the mathematical description between 
quantities/variables X, Y, etc. and their values x, y, etc.  

 

A.1 Frequently Occurring Sources of Uncertainty  
As a rule, various uncertainty sources and their contributions have to be considered when 
evaluating the measurement uncertainty for a measurement or test procedure. Common 
sources of uncertainty are listed in this annex. They can be divided into four groups: 

1. Uncertainties, which depend on sampling / sample preparation  

a) Taking samples which only represent the measuring object to a limited extent  

b) Contamination / degradation of samples during sampling  

c) Contamination / degradation of samples during their physical processing  

d) Homogenisation (incompleteness)  

e) Contamination / degradation of samples during their storage 

f) Chemical sample digestion (incompleteness, contamination, interferences)   

g) Chemical sample preparation / separation techniques (incompleteness, 
contamination)  

2. Uncertainty contributions, which depend on the properties of the investigated object  

a) Noise, instability of the investigated object (temporal change of relevant quantities)   

b) Degradation or ageing of the investigated object (temporal change of relevant 
quantities)  

c) Inhomogeneity / non-uniformity of the investigated object (spatial change of relevant 
quantities)   

d) Matrix effects / interactions 

3. Uncertainty contributions, which depend on the measurement / test methods used  

a) Inadequate implementation or definition of the measurand (approximations, 
idealisations, hypotheses)  

b) Uncertainty of process parameters (e. g. ambient conditions) and of relevant 
influence quantities  

c) Neglected influence quantities (e. g. ambient temperature, ambient pressure, 
magnetic field strength)   

d) Limited instrument resolution, fuzziness or uncertainty of the position of 
discriminator thresholds etc.   

e) Limits of detection, limited sensitivity   

f) Instrumental noise and drift 

g) Random interferences (such as interfering fields etc.)   

h) Inadequate impedance matching and transmission / transduction of the measurand 

i) Instrumental dead time (error due to coincidences)   
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j) Instrumental dynamics (frequency response / overshooting / resonance)   

k) Different perception / visualisation of the measurands 

l) Data evaluation, numerical accuracy etc.   

m) Uncertainty obtained from inter-laboratory comparisons  

4. Uncertainty of reference values on which the measurement / test is based 

a) Uncertainty of certified values / calibration values   

b) Drift / degradation of reference values / reference materials  

c) Uncertainty of imported values from the literature (data compilations, scientific 
publications etc.)   

d) Uncertainty obtained from inter-laboratory comparisons 

The various uncertainty contributions are not necessarily independent from each other. They 
are partly of random and partly of systematic character. Random effects contribute to the 
variation of individual  results in replicate measurements. Associated uncertainties can be 
evaluated using statistical methods, e.g. as the experimental standard deviation of a mean 
value (type-A evaluation). Uncertainties due to systematic effects must be estimated using 
other suitable approaches or, in the case of imported values, determined from information 
given in the references concerned (type-B evaluation).  

 

A.2 Uncertainty in Linear Calibration 

A.2.1  General 
In linear calibration in the sense of this section, a linear relationship is established between 
the values of a quantity X and the values of a second quantity Y, e.g. between 

- Tensile strength and hardness of steel materials;  

- Thermoelectric voltage and temperature in thermocouples; 

- Response and analyte content in an instrumental analytical method; 

- Measurement results and corresponding reference values in the validation of a test 
method.  

The relationship established by calibration is used to calculate the values of one quantity 
(output quantity, dependent variable) from the corresponding values of the other quantity 
(input value, independent variable). Depending on whether X or Y is chosen as input 
quantity, a linear relationship can be expressed in two different forms, Y = α + βX and  
X = γ + δY, respectively. 

In the following it will be assumed that Y is determined as a function of X according to  

 XY β+α=  (A.2.1) 

i. e. that the task of calibration is to determine the parameters α (intercept) and β (slope) of 
such function. 

When using the linear relationship established by calibration, two cases must be 
distinguished: 

 Direct calibration: Y is the target quantity, whose uncertainty has to be 
determined, X is an input quantity of Y. 

 Indirect calibration: X is the target quantity, whose uncertainty has to be 
determined, Y is an input quantity of X. 
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In the case of direct calibration the relationship Y = α + βX is used directly to calculate the 
target quantity Y. According to the rules of uncertainty propagation [see Section 3.3, 
Eq. (3.11)] the uncertainty u(Y) of the target quantity is obtained from the uncertainty u(X) of 
the input quantity X, the uncertainties u(α), u(β) of the parameters α, β and their covariance 
u(α,β) as follows: 

 ( ) ( ) ( ) ( ) ( )βα+β+α+β= ,Xu2uXuXuYu 222222  (A.2.2) 

In the case of indirect calibration the relationship Y = α + βX is not used directly. Instead, the 
inverse relationship is used to calculate the target quantity X. 

 
β
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YX  (A.2.3) 

The uncertainty u(X) of the target quantity is obtained as follows: 
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Note 1: If the parameters α and β are determined jointly (as usually done), then these 
quantities are correlated, because their uncertainty sources are the same: the 
calibration data (x1,y1), (x2,y2), …, (xK,yK). The covariance u(α,β) generally contributes 
significantly to the final uncertainty and therefore must not be disregarded. 

Note 2: The uncertainty determined according to Eqs. (A.2.2) or (A.2.4) is reliable only 
if the validity of the regression model has been checked and confirmed. This can be 
done by statistical analysis of the residual dispersion of the calibration points around 
the best-fit line (e.g. F test).  

The following sections deal with the determination of the parameters α, β and the evaluation 
of their uncertainties, i.e. the quantities u(α), u(β) and u(α,β). 

 

A.2.2  Determination of Intercept and Slope 

The parameters α (intercept) and β (slope) are obtained by statistical evaluation of 
appropriate calibration data {(x1, y1), (x2, y2) …, (xK, yK)}. In principle, two points (x1, y1), 
(x2, y2) are sufficient for the determination of a straight line. In order to detect potential 
measurement  errors and as far as possible compensate for them, usually more than this 
minimum number of calibration points (xi, yi) (i = 1, 2, …, K) are used, and the intercept and 
slope of the calibration line are determined by linear regression. In most cases the standard 
version of the least squares method is used for this purpose. According to this method the 
parameters α and β are determined in such a way that the sum of squared deviations,  
S = Σ [yi - (α + βxi)]2 is a minimum. The solution of this optimisation problem is given by the 
following, well-known formulae for the estimates of the intercept α and the slope β. 

 
xx

xy

Q
Q

=β  (A.2.5) 

 xy β−=α  (A.2.6)  

The symbols in these equations are: 

x̄ = [Σxi]/K Mean value of x1, x2, ..., xK; 

ȳ = [Σyi]/K Mean value of y1, y2, ..., yK;  

Qxx = Σ(xi - x̄)2 Sum of squared deviations in x; 

Qxy = Σ(xi - x̄)(yi - ȳ) Sum of deviation products in x and y. 
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The sums run over i = 1, 2, ..., K. 

The standard version of the least squares method is based upon the following assumptions: 

- The uncertainty of the values of the independent variable X is negligible in relation to 
the dispersion of the values of the dependent variable Y. 

- The dispersion of the Y values is constant in the calibration range. 

- The values of Y for a fixed X follow a normal distribution. 

Under these conditions the method provides optimum estimates for the parameters α and β. 
However the method is also applicable in cases of moderate deviations from these 
conditions (see standard statistical text books).  

If the above conditions are not met even approximately, other regression methods have to be 
used. For many applications, modifications of the standard least squares method are 
suitable, e.g.  

- The method of weighted least squares, if the dispersion of the Y values varies 
strongly in the calibration range. Here the squared deviations are weighted with the 
inverse variances of the calibration values. 

- The generalised least squares method, if the uncertainty of the X values and the 
dispersion of the Y values are comparable. Here the sum of the squared deviations in 
X and Y, if necessary weighted with the inverse variances of the calibration values, is 
minimised. 

- Robust regression methods, if there are substantial deviations from the normal 
distribution or calibration data are contaminated by outliers. Here medians and 
quantiles are used instead of mean values and standard deviations. 

For detailed information on the above mentioned regression methods, reference should be 
made to specialist literature on regression techniques, e. g. the Section "Modelling of data" 
in: Press, W. H. et al.: Numerical Recipes in Fortran, 2. edition, Cambridge University Press 
(1992). 

 

A.2.3  Evaluating the Uncertainty of Intercept and Slope 
Two basically different methods are available for evaluating the uncertainty of the parameters 
α und β: 

- Statistical analysis of the dispersion of the calibration points; 

- Propagation of uncertainty of calibration data. 

These two methods are described in the following. 

Statistical Analysis 

Statistical analysis makes only implicit use of the uncertainty of the calibration data. The first 
step is to check whether the dispersion of the calibration points around the calibration line is 
approximately constant. If this is the case, the so-called residual standard deviation sR of the 
measured values yi is determined according to the following equation: 
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Using this key quantity, the standard uncertainties u(α), u(β) and the covariance u(α,β) are 
obtained as follows. 
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For calculating the uncertainty of the target quantity in direct calibration according to Eq. 
(A.2.2) 

 ( ) ( ) ( ) ( ) ( )βα+β+α+β= ,Xu2uXuXuYu 222222  

or for indirect calibration according to Eq. (A.2.4) 
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the standard uncertainty of the respective input quantity, u(X) or u(Y), is required in addition.  

In direct calibration the uncertainty u(X) of the input quantity is usually assumed to be 
negligibly small. Thus the standard uncertainty of the target quantity Y becomes 
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In indirect calibration, however, Y is the input quantity. The standard uncertainty u(Y) can be 
estimated by the residual standard deviation sR of the calibration points. In doing so one has 
to take into account whether the input quantity Y is defined as a single value or as the mean 
of a specified number of values:  

 u(Y) = sR    if Y is a single value; 

 u(Y) = sR/ m   if Y is the mean of m independent values. 

Thus in the first case (single value) the standard uncertainty of the target quantity X is  
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In the second case (mean value) the standard uncertainty is 
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The uncertainty u(Y) according to Eq. (A.2.11), or u(X) according to Eqs. (A.2.12) or (A.2.13), 
reaches its maximum at the limits of the calibration range. If the calibration values x1, x2, …, 
xK are approximately equidistant, this maximum value can be estimated as follows: 
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These maxima can be used in order to estimate the contribution of calibration to the overall 
uncertainty for a measurement procedure, or for determining an upper bound of this overall 
uncertainty.  
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Analogous expressions apply for the variants of the standard least squares method as 
discussed in Section A.2.2.  

With regard to literature research it should be noted that the symbols used in this section 
deviate from standard statistical symbols. Instead of u(x)2 mainly var(x) and occasionally 
s(x)2 are used, instead of u(x,y) mainly cov(x,y), and occasionally s(x,y). 

Uncertainty Propagation 
In the procedure discussed in the previous section, the calibration uncertainty (i. e. the 
uncertainty of intercept and slope) is derived from the dispersion of the calibration points 
around the calibration line. The uncertainty of the calibration data is not accounted for in this 
calculation. In contrast to that, in the procedure described in this section, the calibration 
uncertainty is traced back to the uncertainty of the calibration data. 

In the uncertainty propagation approach, the uncertainties of the intercept and the slope of 
the calibration line and the covariance of these two parameters are calculated from the 
uncertainties u(xi), u(yi) of the coordinates of the calibration points. In addition, covariances 
u(xi,xj) may have to be included if there are correlations between calibration standards. 
These calculations are performed using the following equations. 
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with an analogous equation for u(β) and  
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Most often the third term in these equations can be put to zero, because the calibration 
values xi of the independent variables are usually determined independently from each other. 
However, there are cases of practical relevance where this independence does not hold, e.g. 
in a dilution series of calibration solutions. If two "daughter solutions" descend from the same 
"parent solution", then an error in the composition of the parent solution propagates to the 
composition of the daughter solutions in a (positively) correlated fashion. This correlation 
must be taken into account by appropriate covariances. 

Sensitivity coefficients (∂α/∂xi), (∂α/∂yi), (∂β/∂xi), (∂β/∂yi) in Eqs. (A.2.14) and (A.2.15) can be 
determined using differential calculus only in exceptional cases. Therefore these equations 
must usually be evaluated using numerical differentiation. For this purpose the procedure 
described in Section A.4 can be applied. 

 

A.3 Modelling of Process Steps by Efficiencies and Increments 
For the application of the uncertainty propagation law 
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it is necessary to describe the result Y as a function of the relevant input quantities X1, X2, ..., 
XN. This functional description is needed to determine the sensitivity coefficients ci = (∂Y/∂Xi). 

If the input quantities Xi are components (constitutive quantities) of the measurand − e.g. 
sample mass and sample volume in case of density − and if Y is given as a mathematical 
function of the input quantities, the derivatives (∂Y/∂Xi) can in principle be calculated without 
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any problem. If the relation between the measurand and the input quantities is given by an 
algorithm, the derivatives can be calculated by means of numerical procedures (see Section 
A.4). However, the sources of uncertainty are often process steps − e.g. sampling, sample 
preparation but also corrections for observed bias − where it is unclear, how a functional 
description in terms of input quantities can be achieved. In the following, a description of 
process steps by efficiencies and increments is presented. This description is suitable for 
such process steps, where the input and output quantity are the same and differ only in their 
values, e.g. the analyte content of a sample before and after sample preparation.  

The description using efficiencies characterises the effect of the process step P by 
multiplying the input quantity with a dimensionless numerical factor fP. 

 

Xin P Xout = fP.Xin 

 

The description by increments characterises the effect of the process step P by adding an 
auxiliary term aP (of the same dimension as the input quantity). 

 

Xin P Xout = Xin + aP 

 

In simple cases the entire procedure can be described by a chain of process steps P1, P2, …, 
PK : 

 

Xin P1 P2 ... PK    Xout 

 

Then, using efficiencies, the input/output relationship is given by  

 inK21out Xf...ffX ⋅⋅⋅⋅=  (A.3.3)  

or using increments 

 K21inout a...aaXX ++++=  (A.3.4)  

Here Xout is the observed quantity while Xin is the actual quantity, whose value has to be 
determined. Thus the result Y = Xin is obtained as a function of the quantity observed at the 
end of the chain, Xmeas  = Xout, and the characteristics for the individual process steps as 
follows   
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or 

 ( )K21mess a...aaXY +++−=  (A.3.6)  

The uncertainty of the result is obtained according to  
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These uncertainty budgets are also valid if the efficiencies fi are equal to unity, or if the 
increments ai are equal to zero, because the values unity and zero may also carry an 
uncertainty. Frequently the information available is not sufficient to specify a value ai ≠ 0 or  
fi ≠ 1, but a rough estimate of an applicable range can be given. Then putting ai = 0 ± u(0) or 
fi = 1 ± u(1) is appropriate. 

In more complicated cases it may be better to work both with efficiencies and increments. 
Then the uncertainty budget has to be constructed accordingly. 

 

A.4 Numerical Methods for Uncertainty Propagation 
A.4.1 Finite Difference Calculation 
The standard uncertainty u(Y) of a result Y, which depends on several input quantities X1, X2, 
..., XN, is made up from the standard uncertainties u(X1), u(X2), ..., u(XN) of the input 
quantities and, if relevant, the covariances u(Xi,Xk) between correlated input quantities as 
follows. 
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Here the quantities ui and uik are given by  
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Application of these equations by hand calculation may encounter problems in the following 
steps.  

(1) Determination of sensitivity coefficients (∂Y/∂Xi) using differential calculus; 

(2) Determination and combination of uncertainty contributions for large numbers of 
influence quantities. 

Sensitivity coefficients (∂Y/∂Xi) can only be determined explicitly by means of differential 
calculus, if the result Y is a simple mathematical function of the input quantities Xi, e.g. a sum 
or a product. For complicated functions the calculation of derivatives is laborious and error-
prone. If the relation between the result Y and the input quantities is not given as a 
mathematical function, but by a computer program, then the calculation of the derivatives is 
not possible.  

In such cases, the sensitivity coefficients (∂Y/∂Xi) can be approximated by quotients of finite 
differences. For the purpose of uncertainty propagation, this approach can be conveniently 
implemented by calculating an approximate value Δi for the product ui = (∂Y/∂Xi)u(Xi) in a 
single step according to 
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Using these quantities, one obtains an approximate value for the standard uncertainty of the 
result as follows: 
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Here r(Xi,Xk) is the correlation coefficient of the quantities Xi and Xk (a quantity related to the 
respective covariance and standard uncertainties, see Section A.6). 

 ( ) ( ) ( ) ( )kikiki XuXuX,XrX,Xu ⋅⋅=  (A.4.6) 

Unless input quantities are significantly correlated, the second sum on the right-hand side of 
Eq. (A.4.5) can be omitted. 

The calculation described above can be carried out conveniently using a spreadsheet 
program. The procedure is described in detail in the EURACHEM/CITAC Guide Quantifying 
Uncertainty in Analytical Measurement, Annex E, Section E.2.   

The determination of the correlation coefficients r(Xi, Xk) between correlated input quantities, 
if required, is described in Section A.6. 

 

A.4.2 Monte Carlo Simulation 
Using the procedure described in the previous section the combined standard uncertainty 
can be calculated in a linear approximation by Eq. (A.4.1) for all practical applications. 
However, as already mentioned in the main text, the linear approximation can lead to 
significant errors if the relation between the result Y and an input quantity Xi is non-linear. 
Moreover, the probability distribution of the result Y can considerably deviate from a normal 
distribution, with the consequence that k = 2 substantially underestimates the coverage factor 
for 95 % coverage. 

These problems can be avoided if, instead of the standard uncertainties, the probability 
distributions attributed to the input quantities are combined (propagated). In the Monte Carlo 
technique a suitable distribution (usually a normal distribution, a rectangular distribution or a 
triangular distribution) is attributed to each input quantity.  

From these distributions a "random value" for each is simulated and a value of the target 
quantity is calculated from this set of input data. This procedure is repeated many times, so 
that a set of data is obtained for the target quantity which represents a random sample from 
the "potential" values of the target quantity as a function of variations in the input quantities 
according to their distribution. The mean value and the standard deviation of this random 
sample are estimates for the value of the target quantity and its standard uncertainty. In 
order to achieve reliable estimates, a high number of replicates is necessary (from 103); the 
required order of magnitude must usually be determined by trial. 

The Monte Carlo technique however provides far more than an estimate for the target 
quantity and its standard uncertainty: an estimated distribution of values which are attributed 
to the target quantity, based upon the available information about the input quantities. In 
case of significant deviations from a normal distribution, the simulated distribution provides a 
more realistic confidence interval than x ± 2u(x), e.g. as the smallest interval, which contains 
95 % of the distribution. 

Application of the Monte Carlo technique for uncertainty evaluation is described in a number 
of publications, e.g. in Cox, M., Dainton, M., Harris, P., Software Specifications for 
Uncertainty Calculation, NPL Report CMSC 40/04 (2004), and commercial software for this 
purpose is available. 

 

A.4.3 Software 
Various computer codes are available for calculating measurement uncertainty by 
uncertainty propagation.  

The Nordtest Technical Report 430 Tools for the test laboratory to implement measurement 
uncertainty budgets (1999) contains an overview of the generally available software at that 
time. 
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For up-to-date information internet search is recommended. 

 

A.5 Uncertainty of Mean Values 

Averaging, i.e. taking a mean value, is by far the most frequent operation in the evaluation of 
experimental data. Therefore uncertainty propagation in averaging deserves special 
attention. Most commonly however, unconsidered use is made of the well-known (1 / n ) 
law, according to which the standard deviation of a mean value of n individual values is 
(1 / n ) times the standard deviation of the individual values. However, this is only valid for 
uncorrelated (i.e. statistically independent) individual values. For correlated individual values 
the covariances between the individual values must be taken into account. 

Correlations between the individual values of a data set (more exactly: between the errors of 
the individual values) occur whenever components of measurement error do not vary at 
random between the individual values of the data set but are constant or vary systematically. 
This can be investigated by a careful analysis of the components of measurement error or by 
statistical evaluation of suitable measurement series (see Section A.6).  

 

A.5.1 General 
The standard uncertainty (standard deviation) of the mean ȳ of n independent individual 
values y1, y2, ..., yn is given by  
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Here u(yi) are the standard uncertainties (standard deviations) of the individual values yi. If all 
individual values originate from the same statistical distribution with a standard deviation of 
σ, and if this random dispersion is the only source of uncertainty, u(yi) = σ holds, giving 
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Thus the well-known (1 / n ) law results: 
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Consequently, the standard deviation of a mean value of n independent individual values 
approaches zero with an increasing sample size n.  

However, if the individual values are correlated – e.g. if they have one or more uncertainty 
sources in common – the standard uncertainty of a mean value is given by 
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Here u(yi,yk) are the covariances between the individual values. 

If all values are equally correlated with each other, with u(yi) = σ and a correlation coefficient 
of r, the uncertainty of the mean becomes 
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u(ȳ) is considerably underestimated by σ / √n even for moderate correlation: if r = 0.5, then 
u(ȳ) ≥ σ / √2.  
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Correlations a. o. occur when, in addition to random variations, the individual values are 
affected by a bias, e.g. due to using the same calibration. Then the random deviations cancel 
out (the larger the sample size n, the more perfectly). The bias will however not be cancelled 
out by averaging and, with increasing sample size n, becomes the dominating part of the 
uncertainty of the mean value. 

Example: A laboratory wants to use the reproducibility standard deviation sR determined in 
the inter-laboratory comparison for a standardised measurement procedure. 
However, deviating from the standard in order to increase the accuracy for a 
special application, replicate measurements were carried out (n) and averaged. 
Then u(ȳ) = sR / √n may not be assumed because the reproducibilty standard 
deviation sR consists of two components according to sR

2 = sr
2 + sL

2. When 
averaging several measurement results of a single laboratory, only the 
repeatability component of the measurement error varies at random, while the 
laboratory deviation component remains constant. Therefore the standard 
uncertainty of a within-laboratory mean has to be calculated according to  
u(ȳ)2 = sr

2 / n + sL
2. 

Summing up, it can be stated that Eqs. (A.5.1) and/or (A.5.2) and (A.5.3) may only be used if 
it is ensured that the individual values are uncorrelated, or if it can be proved that the 
contribution of the correlations is negligible. Otherwise the correlations must be investigated 
and taken into account quantitatively, if relevant. For this purpose the following two 
alternative procedures can be used: 

(1) Backtracking to uncorrelated input quantities, uncertainty propagation with regard to 
those input quantities; 

(2) Uncertainty propagation according to Eq. (A.5.4), with covariances evaluated 
according to Sections A.5.2 or A.6. 

 

A.5.2 Correlation within a Measurement Series 
This section deals with the problem of how to evaluate the uncertainty of a mean value ȳ of a 
measurement series y1, y2, ..., yn, where the individual values were obtained using the same 
measurement procedure on the same measuring object (or essentially identical different 
measuring objects). 

Under these circumstances the standard uncertainty is the same for all individual values, i.e. 
u(yi) = u(y) holds for all yi. However, apart from purely random variations from measurement 
to measurement, there are usually influences on the measurement which remain unchanged 
during a measurement series: e.g. calibration, measuring conditions, characteristics of the 
measuring objects. The measurement uncertainty u(y) thus consists of two components 
according to 

 ( ) ( ) ( )2
inv

2
var

2 yuyuyu +=  (A.5.6) 

Here uvar(y) expresses the contributions of the influences varying from measurement to 
measurement, while uinv(y) stands for the influences which are steady (invariant) from 
measurement to measurement. 

For uvar(y) the procedural standard deviation sV, i.e. the standard deviation under within-
laboratory reproducibility conditions, is an appropriate estimate; as a substitute the standard 
deviation of the individual values of the measurement series can be used instead. If no 
separate estimate is available for uinv(y), but an estimate for the overall uncertainty u(y) (e.g. 
a reproducibility standard deviation sR), the square root of the difference u(y)2 − sV

2 can be 
used for uinv(y):   

 ( ) ( ) 2
V

2
inv syuyu −=  (A.5.7) 
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The covariance u(y,y’) between two individual values is obtained as 

 ( ) ( ) ( ) 2
V

22
inv syuyuy,yu −==′  (A.5.8) 

Thus the uncertainty of the mean becomes 
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This equation shows that averaging will only reduce the uncertainty arising from random 
effects by a factor of 1 / √n, while the uncertainty accounting for systematic effects is left 
unchanged. 

Correlation not only affects the uncertainty of mean values, but also of other combinations of 
measured values, which are obtained using the same measurement procedure on the same 
measuring object or comparable measuring objects. Thus e.g. for a difference 

 ( ) ( ) ( ) ( )y,yu2yuyuyyu 222 ′−′+=′−  (A.5.10) 

If the measurement uncertainty is the same for y and y’, Eq. (A.5.8) yields 

 ( ) 2
V

2 s2yyu =′−  (A.5.11) 

instead of 2u(y)2 as would be obtained without accounting for correlations. The reason for 
this gain of accuracy is that biases cancel out in the case of differences (and equally for 
quotients), like e.g. in difference weighing. 

 

A.6 Evaluation of Covariances and Correlation Coefficients 
A.6.1 General 
For calculating the standard uncertainty u(Y) of a result Y, which depends on several input 
quantities X1, X2, ..., XN, apart from the standard uncertainties u(X1), u(X2), ..., u(XN) of the 
input quantities, the covariances u(Xi,Xj) between correlated input quantities Xi, Xj are 
needed.   

Correlations have to be considered whenever two input quantities depend on each other or 
on a common third (maybe hidden) quantity or on several such quantities. This dependence 
can refer directly to the physical quantities themselves. Thus the mass fractions of the 
components of a mixture of several substances depend on each other, because their sum is 
equal to unity. More frequently however, the physical quantities concerned are independent 
from each other, but their values are not determined independently. That is the case when 
two quantities are determined in the same experiment – e.g. intercept and slope of a 
calibration line – or when the same standard is used in different measurements. Then the 
determined quantities depend on common quantities: the calibration data and/or the value of 
the measurement standard etc. 

The covariance u(Xi,Xj) between two input quantities Xi and Xj can be put to zero if 

- Xi and Xj are independent physical quantities and their values have been determined 
independently from each other, or 

- at least one of the two uncertainties u(Xi), u(Xj) is negligibly small. 

If the information required for the determination of a covariance is not available and cannot 
be acquired at justifiable expenditure, then one has to fall back on rough estimations. The 
basis for this is the fact that u(Xi, Xj) lies between u(Xi)u(Xj) and −u(Xi)u(Xj). If there are no 
further indications available for the magnitude of the covariance and not even for the sign, 
then u(Xi, Xj) = 0 can be assumed if overestimation and underestimation are to be equally 
avoided. However, if it is essential to avoid underestimation at the expense of potential 
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overestimation, then u(Xi, Xj) = u(Xi)u(Xj) can be assumed. Less crude estimations are 
possible if ideas about the correlation mechanism are available. 

Often correlation is due to a change of variables, where uncorrelated original variables were  
substituted by a more convenient set of derived variables (smaller number, more appropriate 
system characterisation etc.). This advantage is however often paid for by the occurrence of 
correlations. If this leads to difficulties in the uncertainty evaluation, it is advisable to revert 
from the correlated input quantities to the original uncorrelated ones, or to seek for 
alternative uncorrelated quantities.  

If the determination of covariances cannot be avoided, two basic approaches are available:  

-  Uncertainty propagation with regard to the common variables; 

- Experimental determination from parallel measurements. 

 

A.6.2 Uncertainty Propagation 
If two quantities Xi and Xj depend on the same uncorrelated quantities Z1, Z2, ..., ZK, the 
covariance between them is given by 
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If the quantities Z1, Z2, ..., ZK are correlated too, their covariances also have to be taken into 
account. In this case the calculation is performed according to 
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A.6.3 Parallel Measurements 
If replicate mesurements of two quantities Xi and Xj were carried out jointly under specified 
conditions, yielding n paired values (xi1, xj1), (xi2, xj2), ..., (xin, xjn) , the values of Xi and Xj may 
be estimated by the mean values x̄i and x̄j of xi1, xi2, ..., xin and of xj1, xj2, ..., xjn, respectively. 
The covariance u(Xi, Xj) between Xi and Xj can be estimated correspondingly by the 
experimental covariance of the mean values, s(x̄i, x̄j). It is given by 
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The standard uncertainties u(Xi) and u(Xj) can then be estimated by the experimental 
standard deviations s(x̄i) and s(x̄j) of the mean values, which are given as follows: 
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with an analogous equation for s(x̄j). 

If the values for u(Xi), u(Xj) and u(Xi,Xj) are used as procedural uncertainties for future 
measurements of the quantities Xi and Xj, then one has to take into account whether single 
values or mean values are determined. For single values, the estimates for u(Xi,Xj) and u(Xi)2 
and u(Xj)2 determined according to (A.6.3) and (A.6.4) have to be multiplied by a factor n, for 
mean values of m individual values by a factor n/m. 

Note: If the number n of measured values is small, the estimates obtained from Eqs. 
(A.6.3) and (A.6.4) are highly inaccurate. Then it may be better to use estimates based 
on experience or simple models. 
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A.6.4 Correlation Coefficients 

Correlation coefficients r(Xi,Xj) can be obtained from the covariances u(Xi,Xj) by 
normalisation with the respective standard uncertainties: 

 ( ) ( )
( ) ( )ji

ji
ji XuXu

X,Xu
X,Xr

⋅
=  (A.6.5) 

If needed, estimates of correlation coefficients can be determined from estimates of 
covariances and standard uncertainties, e.g. by combining Eqs. (A.6.3) and (A.6.4). If 
information about the sign and the magnitude of the correlation is available, correlation 
coefficients can be estimated directly on this basis. 

Example: Correlations between individual values of a measurement series (see Section 
A.5) can only be positive, i.e. 0 < r ≤ 1. In absence of more detailed information, 
r = 0.5 can be assumed. 
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