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Abstract.  A general measurement uncertainty model 
is presented that can be applied to measurements in 
which the value of an attribute is measured directly, and 
to multivariate measurements in which the value of an 
attribute is obtained by measuring various component 
quantities.  In the course of the development of the 
model, axioms are developed that are useful to 
uncertainty analysis [1].  Measurement uncertainty is 
defined statistically and expressions are derived for 
estimating measurement uncertainty and combining 
uncertainties from several sources.  In addition, 
guidelines are given for obtaining the degrees of 
freedom for both Type A and Type B uncertainty 
estimates. 
 
Background 
Suppose that we are making a measurement of some 
quantity such as mass, flow, voltage, length, etc., and 
that we represent our measured values by the variable x.  
Imagine that there is some "expectation value" for x, 
that we designate 〈x〉.1  Each measured value x has 
some unknown error, that we designate εx.  Given these 
designations, we can write each measured value as 

xx x ε= + , 

or 

x x xε = − . 

The values we obtain for x may vary randomly from 
measurement to measurement due to several factors, 
such as environmental fluctuations, operator 
inconsistencies, etc.  Because of their random nature, 

                                                           
1 In this paper, the Dirac notation 〈 . 〉 is used to indicate the 
expectation value of an observable variable or function. 

If a variable x belongs to a population, its expectation value is 
synonymous with the population mean or average value.  
Thus, if x is a statistically distributed random variable, then 
〈x〉 is the mean value of the distribution.  In general, if h(x) is 
a function of x, then 〈h(x)〉 is the value obtained by averaging 
h over all values of x in the population. 

we treat these variations as statistical quantities and say 
that they follow statistical distributions. 
 
We also acknowledge that the measurement reference 
we are using has some unknown bias.  All we may 
know of this quantity is that it comes from some 
population of biases that also follow a statistical 
distribution.  What knowledge we have of this 
distribution may derive from periodic calibration of the 
reference or from manufacturer data. 
 
We are likewise cognizant of the fact that the finite 
resolution of our measuring system introduces another 
source of measurement error whose sign and magnitude 
are unknown and, therefore, can only be described 
statistically. 
 
These observations lead us to a key axiom in 
uncertainty analysis: 

Measurement errors are random variables that follow 
statistical distributions. 

So, in measuring 〈x〉, we would say that x is distributed 
around 〈x〉.  A graphical representation of this statement 
is shown in Figure 1.  In the distribution shown, 〈x〉 = 
10.  The function f(x), called the probability density 
function, is related to the probability of occurrence of 
specific values of x.  It is defined in such a way that, if 
δx is sufficiently small, the probability of obtaining a 
measured value between x and x + δx, is given by 
f(x)δx. 2
 
In Figure 1, the spread of the distribution of measured 
values around the expectation value of 10 is quantified 
by the standard deviation σx of the distribution.  For the 
case shown, σx = 1.  If the standard deviation were 
smaller, the distribution would be less spread out.  If it 
were larger, the spread would be greater. 

                                                           
2 For the definition to be precise, δx needs to be infinitesimal. 
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Figure 1.  The distribution for measured values with an 
expectation value of 10 and a standard deviation or 
uncertainty of 1. 

 
If the standard deviation were zero, the spread of the 
distribution would be zero, and we would say that all 
measured values x would be equal to the expectation 
value 〈x〉.  For such measurements, we would say that 
we have zero measurement uncertainty. 
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Figure 2.  The distribution for measured values with an 
expectaton value of 10 and a standard deviation or 
uncertainty of 0.2. 

 
If the spread of the distribution is nonzero but small, as 
in Figure 2, we would obtain measured values that are 
confined to a small neighborhood around the 
expectation value.  In this case, we would say that the 
measurement uncertainty is small but not zero. 
 
We can readily see that if the distribution were widely 
spread, as in Figure 3, then the values for x that we 
might obtain by measurement would vary considerably.  
In this case, we would say that the measurement 
uncertainty is large. 
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Figure 3.  The distribution for measured values with an 
expectation value of 10 and a standard deviation or 
uncertainty of 2.5. 

 
Defining Uncertainty 
We have seen that the uncertainty in a measured value x 
is a measure of the extent that values of x are spread 
around the expectation value 〈x〉.  Another way of 
saying this is that the more spread out the distribution 
around 〈x〉, the larger the uncertainty.  Since the 
deviations of x from 〈x〉 are just the measurement errors, 
given by εx = x - 〈x〉, we expect that the uncertainty is in 
some way related to the measurement errors εx. 
 
We might at first suppose that the uncertainty is some 
kind of average value for εx.  If so, we would write 

ux ~ average(x - 〈x〉) = 〈x - 〈x〉〉 , 

This is a conceptually palatable definition that, 
unfortunately, does not work.  It turns out that this 
quantity is always zero: 

〈x - 〈x〉〉 = 〈x〉 - 〈x〉 = 0 

So, we need another definition.  The first one didn’t 
work because the “negatives” cancel the “positives.”  
Clearly, we need an unsigned quantity.  One candidate 
might be the square of the deviations: 

ux ~ average[(x - 〈x〉)2] = 〈(x - 〈x〉)2〉 . 

This quantity is the average or mean value of the error 
squared.  Accordingly, it is called the mean square 
error. 
 
Since (x - 〈x〉)2 is always positive, it's average value 
does not always equal zero.  In addition, we can easily 
see that, if a distribution is widely spread, the mean 
square error will be large.  Conversely, if a distribution 
is tightly grouped, the mean square error will be small.  
We appear to be on the right track.  The only problem is 
that the mean square error is not in the same units as the 
measured values.  For instance if we are measuring 
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volts, the mean square error is expressed in volts-
squared. 
 
So, while the mean square error possesses some of the 
properties we seek in a definition of measurement 
uncertainty, it is not in itself an acceptable definition.  
But how about the square root of the mean square 
error?  This quantity has the properties we want and is 
expressed in the same units as measured values.  In fact, 
all the requirements for a good definition of uncertainty 
are met by the square root, and we write 

 ( )2
.xu x x= −  (1) 

We note that, by definition, the square root of the mean 
square error is just the standard deviation.  Accordingly, 

x xu σ= , 

and we have a second key axiom of uncertainty 
analysis: 

The uncertainty in the measurement of 〈x〉 is equal to the 
standard deviation of the distribution of measurements of 〈x〉. 

Substituting εx = x - 〈x〉 in Eq. (1)  gives 

2
x xu ε= . 

Since the square root of the mean square error in a 
quantity is the standard deviation for the quantity, then, 
by the foregoing axiom, we can write 

 

2

.
x

x

x xu

u
ε

ε

ε

σ

=

=

=

 (2) 

This expression provides a third (and final) key axiom 
of uncertainty analysis: 

The uncertainty in the measurement of 〈x〉 is equal to the 
uncertainty in the measurement error. 

 
Combining Uncertainties 
Suppose, for discussion purposes, that the error in x is 
composed of errors from two sources:  measurement 
parameter bias and measurement process random 
(repeatability) error.3  We then have 

                                                           
3 This is not to suggest that these error sources are the only 
ones present in all measurements.  There may also be errors 
due to resolution, environment, operator, etc. 

xb xrx x ε ε= + + , 

where εxb is the error due to parameter bias and εxr is the 
random error.  Given the above definition of 
measurement uncertainty and invoking the third axiom, 
we have 

( )22

2 2

2 2

2

2 .

x xb xr

xb xr xb xr

xb xr xb xr

u ε ε

ε ε ε ε

ε ε ε ε

= +

= + +

= + +

 

Applying Eq. (2), we can write the above expression as 
2 2 2 2 .x xb xr xb xru u u ε ε= + +  

So, we see that the square of the total uncertainty due to 
measurement error is equal to the sum of the squares of 
the uncertainties of the constituent errors plus an 
additional term.  The additional term is called the 
covariance of εxb and εxr. 
 
To simplify the analysis, we usually define another 
variable, called the correlation coefficient ρbr as 

xb xr
br

xb xru u
ε ε

ρ ≡ . 

With this definition, we can now write 
2 2 2 2x xb xr br xb xu u u u uρ= + + r , 

and 

 2 2 2x xb xr br xb xu u u u uρ= + + r . (3) 

 
Statistically Independent Errors 
For most measurements, the bias of the measuring 
parameter and the error due to random variations are 
completely independent of one another.  If so, it can be 
shown that 

0xb xrε ε = , 

and, consequently, that ρbr = 0.  In this case, we have 

 2 2
x xb xu u u= + r , (4) 

i.e., the total uncertainty in the measurement of x is the 
square root of the sum of the constituent uncertainties.  
The latter quantity is called the root sum square or rss 
of the constituent uncertainties. 
 
In general, we can make the following assertion: 
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The total uncertainty in the sum of independent errors 
is a root-sum-square (rss) combination of their 
uncertainties. 
 
Highly Correlated Errors 
In making complex measurements involving more than 
one variable, we sometimes encounter cases where the 
correlation coefficient is not zero.  Suppose, for 
instance that we are interested in the uncertainty in a 
quantity 

z = x + y, 

obtained by direct measurement of the quantities x and 
y.  We first write 

,

x y

x y

x y

z x y

x y

z

ε ε

ε ε

ε ε

= 〈 〉 + + 〈 〉 +

= 〈 〉 + 〈 〉 + +

= 〈 〉 + +

 

so that 

z x yε ε ε= +  

and 

( )22 2

2 2

2 2

2

2 .

z z x y

x y x

x y xy x y

u

u u u u

ε ε ε

yε ε ε ε

ρ

= = +

= + +

= + +

 

If both x and y are so strongly correlated that ρxy = 1.  
Then the expression for uz becomes 

( )

2 2

2

2

.

z x y x

x y

x y

u u u u u

u u

u u

= + +

= +

= +

y

 

From this result, we can make the following statement: 
 
If the correlation coefficient between errors is equal to 
one, the total uncertainty of their sum is the sum of the 
individual uncertainties. 
 
Note that, if the correlation coefficient is equal to minus 
one, we have 

( )

2 2

2

2

| | ,

z x y x y

x y

x y xy

u u u u u

u u

u u ρ

= + −

= −

= − = −1.

 

Multivariate Measurements and Sensitivity 
Coefficients 
The general error model for measurements involving 
more than one variable expresses the total error as a 
weighted sum of the constituent errors.  To develop this 
model, we again consider the measurement of a 
quantity z obtained by measuring two quantities x and y.  
In this case, however, x and y are related to z by some 
function 

z = h (x, y) . 

The general error model for the total bias εz is written 

,

z x

x x y y

h h
x y

c c

yε ε ε

ε ε

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
= +

, 

where cx and cy are referred to as sensitivity coefficients.  
Extrapolating from the previous section, we can write 
the total uncertainty as 

( )2

2 2 2 2

2 2 2 2

2 2 2 2

2

2

2 .

z x x y y

x x y y x y x y

x x y y x y x y

x x y y x y xy x y

u c c

c c c c

c c c c

c u c u c c u u

ε ε

ε ε ε ε

ε ε ε

ρ

= +

= + +

= + +

= + +

ε

 

Again, if the x and y measurements are independent of 
one another, then ρxy = 0, and the uncertainty becomes 

2 2 2 2
z x x yu c u c u= + y . 

On the other hand, if the biases in the x and y 
measurements are correlated such that ρxy = 1, then the 
uncertainty becomes 

( )

2 2 2 2

2

2

.

x x x y y x y x

x x y y

x x y y

u c u c u c c u u

c u c u

c u c u

= + +

= +

= +

y

 

Of course, this treatment of uncertainty can be extended 
to cases involving any number of errors and 
uncertainties. 
 
Combining Type A and Type B Estimates 
An uncertainty estimate computed as the standard 
deviation of a random sample of measurements or 
determined by analysis of variance is called a Type A 
estimate.  An uncertainty estimate determined 
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heuristically, in the absence of sampled data, is called a 
Type B estimate. 
 
The current mindset is that a Type A estimate is a 
“statistical” quantity, whereas a Type B estimate is not.  
The main reason for this is that we can qualify a Type 
A estimate by the amount of information that went into 
calculating it, whereas it is commonly believed that we 
can’t do the same for a Type B estimate.  The amount 
of information used to estimate the uncertainty in a 
given error is called the degrees of freedom.  The 
degrees of freedom is required, among other things, to 
employ an uncertainty estimate in computing 
confidence limits commensurate with some desired 
confidence level. 
 
For a Type A estimate, the degrees of freedom is the 
size of the random sample minus one.  Since a Type B 
estimate is, by definition, obtained without recourse to a 
sample of data, we obviously don’t have a sample size 
to work with.  However, we can develop something 
analogous to a sample size by applying a method based 
on Eq. G.3 of the GUM [2]. 
 
This method involves extracting what is known about a 
given measurement error and then converting this 
information into an effective degrees of freedom [3-5].4
 
Component Uncertainty 
In multivariate measurements, the variables that are 
measured to obtain a value for a quantity of interest are 
referred to as component variables, and the errors in 
their measurements are called component errors.  In 
estimating the uncertainty in the measurement of each 
component error, we break the error down into 
constituent error sources and estimate the uncertainty 
due to each error source. 
 
A direct measurement is treated in the same way, 
except that, in a direct measurement, there is only one 
component error. 
 
Suppose that we have a component error εc whose error 
sources include measuring parameter bias, random 
error, resolution error and operator bias.  The error 
model for this measurement can be expressed as 

c bias random resolution operatorε ε ε ε ε= + + + . 

If we apply the uncertainty estimation expressions 
developed in this paper, we have 

                                                           
4 The method assumes, as with most statistical tools in the 
GUM and elsewhere, that measurement errors are 
approximately normally distributed. 

2 2 2 2 2
c bias random resolution operatoru u u u u= + + + , 

where it can be safely assumed that the various errors 
are independent of one another, i.e., the correlation 
coefficients are all zero.  From this expression, we can 
clearly see that uncertainties are combined without 
regard for how they are estimated, i.e., without 
distinguishing between Type A and Type B estimates.  
However, after we have obtained estimates of each of 
the constituent uncertainties, does the total estimate 
mean anything?  Can it be used in any way, such as to 
establish confidence limits, for example?   
 
As indicated in the opening remarks in this section, 
unless we can obtain the degrees of freedom for each 
constituent, the answer is no — at least as far as 
developing confidence limits is concerned.  It therefore 
behooves us to determine the degrees of freedom for 
each uncertainty estimate. 
 
Random Error 
For urandom, this is easy.  From earlier, we observed that 
the uncertainty in a measurement is equal to the 
standard deviation of the measurement error 
distribution.  We can approximate this standard 
deviation by taking a random sample of measurements 
and computing the sample standard deviation.  The 
appropriate expression is 

( )2

1

1 ,
1

random x

n

i
i

u s

x x
n =

= −
− ∑

 

where xi is the ith measured value in the sample, n is the 
sample size, x  is the sample mean and sx is the sample 
standard deviation.  The “approximately equal” sign in 
this expression indicates that the measurement sample 
is finite.  That is, that the amount of information that 
went into estimating the uncertainty due to random 
error is not infinite.  This amount of information is the 
degrees of freedom νrandom.  For the above estimate, it is 
equal to n – 1: 

1random nν = − . 

Resolution Error 
For uresolution, we have two possibilities; we either have 
analog readings or a digital display. 
 
Digital Display 
If we have a digital display, errors due to resolution are 
contained within ± half the resolution increment around 
the indicated value.  In addition, the probability of the 
resolution being anywhere within these limits is equal.  
That is, there is no special likelihood that a resolution 
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error will be near the limits or near the indicated value 
or anywhere else within the limits.  The statistical 
distribution for such errors is the rectangular or uniform 
distribution shown below.5

0

f (ε)

ε
−a a0

f (ε)

ε
−a a  

Figure 4.  The Uniform or Rectangular Error 
Distribution:  The probability of lying between the 
distribution limits -a and a is constant.  The probability 
of lying outside ±a is zero. 

 
The standard deviation or uncertainty for the uniform 
distribution is equal to the distribution limit a divided 
by the square root of three.  Hence, the uncertainty due 
to resolution error is just half the last digit divided by 
the root three.  For example, imagine that a digital 
readout is to three decimal places.  Then the uncertainty 
due to resolution error is 

3
0.0005 0.00029.

3

resolution
au =

= =
 

Note that there is no ambiguity in obtaining this 
number.  The “amount of information” is all there is on 
the subject.  Accordingly, for this error source, the 
degrees of freedom for the uncertainty estimate is 
infinite. 
 
Analog Display 
If we have an analog display, some judgment is needed 
by the operator in estimating limits ± L within which 
readings can be resolved.  The operator must also 
estimate a probability or confidence level p that 
resolution errors are contained within these limits.  In 
such cases, we assume that resolution errors are 
normally distributed.  If we are certain of the estimated 
limits and the confidence level, then the resolution 
uncertainty is computed using 

1 1
2

resolution
Lu

p−
=

+⎛ ⎞Φ ⎜ ⎟
⎝ ⎠

, 

where the operator Φ-1 is the inverse normal 
distribution function. 
                                                           
5 For a discussion on error distributions, see [6]. 

 
When we are certain of the estimated limits and the 
confidence level, the degrees of freedom are infinite.  If 
the limits or the confidence level are not precisely 
known, we must apply what is known about the 
resolution error to estimating an effective degrees of 
freedom [3 – 5].  For example, suppose the operator 
claims that L = 50% of the smallest increment of 
resolution (give or take 10%) and that he can resolve 
readings within ± L nine times out of ten.  If so, the 
effective degrees of freedom are6

38resolutionν . 
 
Measurement Bias 
We typically assume that ubias, is normally distributed 
about the measuring parameter's reading or its nominal 
value, whichever applies.  With regard to the degrees of 
freedom in ubias, suppose that we have some knowledge 
of the calibration history for the parameter and can 
make the following statement:  “In calibrating the 
parameter used to measure the quantity of interest, we 
have found it to be in-tolerance 90% of the time.”  If we 
are using the measuring parameter near the end of its 
calibration interval, and the 90% figure is based on a 
large number of prior calibrations, then there is little 
ambiguity in our knowledge, and the degrees of 
freedom for ubias can be taken to be essentially infinite.  
But if there is some “fuzziness” in the 90% number, 
due to the sparseness of calibration history or due to 
using the parameter at some intermediate point in its 
interval, this would not be so — the degrees of freedom 
would be finite.  For instance, let’s say that, for this 
particular measurement parameter, we estimate the in-
tolerance figure to be 90%, give or take 5%.  If so, then 
we have 

69biasν . 

Operator Bias 
For uoperator, as with ubias, we rely on prior history.  In 
this case, the prior history may consist of our 
recollected experience in making the measurement of 
interest.  Since we are dealing with operator bias, which 
is expressed as a tendency to slant measurement results 
one way or another, we may be able to formulate a set 
of bounding limits such that the errors due to operator 
tendencies can be said to lie within the limits with some 
definable containment probability.  For example, 
imagine that we believe that operator bias is confined to 
± limits of between 8 and 10, with a containment 

                                                           
6 All Type B degrees of freedom estimates presented in this 
paper were obtained using the ISG Type B Uncertainty 
Calculator [4]. 
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probability of 75%, give or take 10%.  Then the degrees 
of freedom due to operator bias is7

26operatorν . 

Component Degrees of Freedom 
We now have degrees of freedom for both Type A and 
Type B estimates.  This allows us to treat the total 
component uncertainty as a statistical quantity.  The 
degrees of freedom for the total uncertainty is obtained 
using the Welch-Satterthwaite relation [2].  In general, 
if a component error is composed of k error sources εi, 
with uncertainties ui, i = 1, 2, ..., k, this relation gives 
the degrees of freedom νc as 

4

4

1

c
c k

i

ii

u
u

ν

ν
=
∑

. 

For the present discussion, this becomes 

( )22 2 2 2

44 4 4
.

69 1 26

bias random resolution operator
c

operatorbias random resolution

u u u u

uu u u
n

ν
+ + +

+ + +
− ∞

 

 
Conclusion 
It was asserted that measurement errors are random 
variables that are statistically distributed around 
expectation values.  This assertion was expressed as the 
axiom  Measurement errors are random variables that 
follow statistical distributions. 
 
A property of error distributions that is important to 
uncertainty analysis is the distribution's standard 
deviation.  The standard deviation quantifies the spread 
of errors around the expectation value.  Because of its 
characteristics, e.g., the wider the spread, the larger the 
standard deviation, it is the ideal property to use for 
measurement uncertainty.  This was also stated as an 
axiom:  The uncertainty in the measurement of 〈x〉 is 
equal to the standard deviation of the distribution of 
measurements of 〈x〉. 
 

                                                           
7 The ISG Type B Uncertainty Calculator was again 
employed.  It should be mentioned that parameter bias 
uncertainty, random uncertainty and operator bias can all be 
calculated as Type A estimates using  analysis of variance 
with sampled data.  However, with regard to operator bias, the 
number of different operators that are sampled is usually so 
small as to invalidate the operator bias uncertainty estimate.  
In such cases, you are often better off attempting to make a 
Type B estimate. 

Acceptance of these axioms and the application of Eqs. 
(1) and (2), produced a third axiom:  The uncertainty in 
a measurement is equal to the uncertainty in the 
measurement error. 
 
This axiom is especially useful in uncertainty analysis, 
particularly in accounting for correlations.  When 
considering correlations, it is important to bear in mind 
that the relevant correlations are those between 
measurement errors rather than measured quantities.  
Thus, two quantities may be functionally related and, 
seemingly, correlated but their measurement errors may 
be completely independent and uncorrelated. 
 
Working within the framework of the above axioms, a 
methodology was presented that lead to expressions for 
both estimating measurement uncertainty and 
combining uncertainties from several sources.  The 
methodology is applicable to both direct and 
multivariate measurements. 
 
It was argued that, to use an uncertainty estimate in a 
statistical manner, its degrees of freedom must be 
determined.  For a Type A estimate, based on a 
measurement sample, the degrees of freedom value is 
the sample sizes minus one.  The degrees of freedom 
value for a Type B estimate, is obtained using a method 
developed by Integrated Sciences Group [3] and 
implemented in shareware [4]. 
 
References 
[1] Castrup, S., "A Comprehensive Comparison of 

Uncertainty Analysis Tools, "Proc. Measurement 
Science Conference, Anaheim, January 2004. 

[2] ANSI/NCSL Z540-2-1997, U.S. Guide to the 
Expression of Uncertainty in Measurement, NCSL, 
Boulder, 1997. 

[3] Castrup, H., “Estimating Category B Degrees of 
Freedom,” Proc. Measurement Science 
Conference, Anaheim, January 2000. 

[4] ISG Type B Uncertainty Calculator, © 1999-2003, 
Integrated Sciences Group.  All rights reserved. 

[5] UncertaintyAnalyzer, © 1994-2004, Integrated 
Sciences Group, all rights reserved. 

[6] Castrup, H., "Distributions for Uncertainty 
Analysis," Proc. International Dimensional 
Workshop, Knoxville, May 2001. 

 

Integrated Sciences Group  5 May, 2004 


	Estimating and Combining Uncertainties
	Background
	Defining Uncertainty
	Combining Uncertainties
	Statistically Independent Errors
	Highly Correlated Errors
	Multivariate Measurements and Sensitivity Coefficients
	Combining Type A and Type B Estimates

	Component Uncertainty
	Random Error
	Resolution Error
	Digital Display
	Analog Display

	Measurement Bias
	Operator Bias
	Component Degrees of Freedom

	Conclusion
	References


