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ABSTRACT

This guide provides best practice on the evaluation of uncertainties within
metrology, and on the support to this topic given by statistical modelling. It
is motivated by two principle considerations. One is that although the primary
guide on uncertainty evaluation, the Guide to the Expression of Uncertainty in
Measurement (GUM), published by ISO, can be expected to be very widely ap-
plicable, the approach it predominantly endorses contains some limitations. The
other is that on the basis of the authors’ considerable contact with practitioners
in the metrology community it is evident that important classes of problem are
encountered that are subject to these limitations. These problems include

• Measurements at the limits of detection, where the magnitude of an un-
certainty is comparable to that of the measurand

• Measurements of concentrations and other quantities that are to satisfy
conditions such as summing to 100%

• Obtaining interpolated values and other derived quantities from a calibra-
tion curve, accounting for the correlations that arise

• Determining “flatness”, “roundness” and other such measures in dimen-
sional metrology, whilst avoiding the anomalous “uncertainty behaviour”
that is sometimes observed

• Treating the asymmetric distributions that arise when dealing with the
magnitudes of complex variables in acoustical, electrical and optical work.

There would appear to be inadequate material available in existing guides to
facilitate the valid solution to such problems.

Central to consideration is the need to carry out uncertainty evaluation in
as scientific a manner as economically possible. Although several approaches to
uncertainty evaluation exist, the GUM has been very widely adopted (and is
strongly supported by the authors of the current guide). The emphasis of the
current guide is on making good use of the GUM, on aspects that yield greater
generality, and especially on the provision in some cases of measurement un-
certainties that are more objectively based and numerically more sustainable.
It is also concerned with validating the current usage of the GUM in circum-
stances where there is doubt concerning its applicability. Many laboratories
and accreditation organizations have very considerable investment in the use of
“Mainstream” GUM (i.e., as summarized in Clause 8 of the GUM). It is vital
that this use continues in a consistent manner (certainly in circumstances where
it remains appropriate); this guide conforms to this attitude. An important al-
ternative, Monte Carlo Simulation, is presented as a numerical approach to be
used when the conditions for Mainstream GUM to apply do not apply.

The relationship of this guide to the work being carried out by the Joint
Committee on Guides in Metrology to revise the GUM is indicated.

An intention of this guide is to try to promote a scientific attitude to un-
certainty evaluation rather than simply provide mechanistic procedures whose
applicability is questionable in some circumstances.
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Uncertainty and Statistical Modelling

Chapter 1

Scope

1.1 Software Support for Metrology Programme

Almost all areas of metrology increasingly depend on software. Software is used
in data acquisition, data analysis, modelling of physical processes, data visu-
alisation, presentation of measurement and calibration results, evaluation of
uncertainties, and information systems for the effective management of labora-
tories. The accuracy, interpretation and reporting of measurements all depend
on the correctness of the software used. The UK’s Software Support for Metrol-
ogy (SSf M) Programme is designed to tackle a wide range of generic issues
associated with mathematics, statistics, numerical computation and software
engineering in metrology. The first Programme, spanning the period April 1998
to March 2001, is organised into four themes:

Modelling techniques: Modelling discrete and continuous data, uncertainties
and statistical modelling, visual modelling and data visualisation, data
fusion,

Validation and testing: Testing spreadsheet models and other packages used
in metrology, model validation, measurement system validation, validation
of simulated instruments,

Metrology software development techniques: Guidance on the develop-
ment of software for metrology, software re-use libraries, mixed language
programming and legacy software, development of virtual instruments,

Support for measurement and calibration processes: The automation of
measurement and calibration processes, format standards for measurement
data.

There are two further strands of activity concerning i) the assessment of the
status of mathematics and software in the various metrology areas and ii) tech-
nology transfer.

The overall objective of the programme is the development and promotion of
best practice in mathematical and computational disciplines throughout metrol-
ogy through the publication of reports, case studies and best practice guides and
organisation of seminars, workshops and training courses. An overview of the
SSf M programme is available [48, 50].
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This document is a deliverable associated with the first theme, modelling
techniques, specifically that part of the theme concerned with uncertainties and
statistical modelling.

1.2 Structure of the Guide

In summary, this best-practice guide provides information relating to

1. The use of statistical modelling to aid the construction of an input-output
model as used in the Guide to the Expression of Uncertainty in Measure-
ment (GUM) [1] (Section 2.1)

2. The objective of uncertainty evaluation (Section 2.2)

3. A statement of the main problem addressed in the area of uncertainty
evaluation (Section 3.1)

4. The main stages of uncertainty evaluation, including a generally applicable
two-phase procedure (Section 4)

5. Procedures for uncertainty evaluation and particularly for determining a
coverage interval for the measurand (Section 5)

6. A classification of the main model types and guidance on the application
of Mainstream GUM to these models (Section 6)

7. Details of a general numerical procedure, Monte Carlo Simulation, for
uncertainty evaluation (Section 7)

8. A facility that enables the results of Mainstream GUM to be validated,
thus providing assurance that Mainstream GUM can legitimately continue
to be used in appropriate circumstances (Section 8)

9. Examples to illustrate the various aspects of this guide (Section 9).

1.3 Summary

This guide provides best practice on the evaluation of uncertainties within
metrology and the support to this discipline given by statistical modelling. Cen-
tral to considerations is a measurement system or process, having input quanti-
ties that are (invariably) inexact, and an output quantity that consequently is
also inexact. The input quantities represent measurements or other information
obtained from manufacturers’ specifications and calibration certificates. The
output represents a well-defined physical quantity to be measured, the measur-
and.1 The objective of uncertainty evaluation is to model the system, including
the quantification of the inputs to it, accounting for the nature of their inexact-
ness, and to determine the model output, quantifying the extent and nature of

1In some instances the output quantities may not individually have physically meaning.
An example is the set of coefficients in a polynomial representations of a calibration curve.
Together, however, the set of quantities (coefficients) define a physically meaningful entity,
the calibration curve.
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its exactness.2 A main requirement is to ascribe to the measurand a so-called
coverage interval that contains the result of measurement, the “best estimate”
of the model output quantity, and that can be expected to include a specified
proportion, e.g., 95%, of the distribution of values that could reasonably be
attributed to the measurand.3

A key document in the area of uncertainty evaluation is the Guide to the
Expression of Uncertainty in Measurement (GUM) [1]. The GUM provides a
“Mainstream” procedure4 for evaluating uncertainties that has been adopted by
many bodies. This procedure is based on representing the model input quantities
in terms of estimated values and “standard uncertainties” that measure the
dispersions of these values. These values and the corresponding uncertainties
are “propagated” through (a linearized version of) the model to provide an
estimate of the output quantity and its uncertainty. A means for obtaining a
coverage interval for the measurand is provided. The procedure also accounts
for the correlation effects that arise if the model input quantities are statistically
interdependent.

In order to make the GUM more immediately applicable to a wider range
of problems, a classification of model types is provided in this guide. The
classification is based on

1. Whether there is one or more than one output quantity,

2. Whether the model or the quantities within it are real- or complex-valued,
the latter arising in electrical, acoustical and optical metrology,

3. Whether the model is explicit or implicit, viz., whether or not it is possible
to express the output quantity as a direct calculation involving the input
quantities, or whether some indirect, e.g., iterative process, is necessitated.

Guidance on uncertainty evaluation based on Mainstream GUM principles is
provided for each model type within the classification.

The model employed in the GUM is an input-output model, i.e., it expresses
the measurand in terms of the input quantities. For relatively simple measure-
ments, this form can straightforwardly be obtained. In other cases, this form
does not arise immediately, and must be derived. Consideration is therefore
given to statistical modelling, a process that relates the measurement data to
the required measurement results and the errors in the various input quanti-
ties concerned. This form of modelling can then be translated into the “GUM
model”, in which the errors become subsumed in the input quantities and their
influences summarized by uncertainties. Statistical modelling also covers the
analysis and assignment of the nature of the inexactness of the model input
quantities.

Although the GUM as a whole is a very rich document, there is much evi-
dence that Mainstream GUM is the approach that is adopted by most practi-
tioners. It is therefore vital that the fitness for purpose of this approach (and of
any other approach) is assessed, generally and in individual applications. There

2Model validation, viz., the process of ascertaining the extent to which the model is ad-
equate, is not treated in this guide. Detailed information on model validation is available
[9].

3There may be more than one output, in which case a coverage region is required.
4Mainstream GUM is summarized in GUM Clause 8 and Section 6 of this guide.
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are some limitations and assumptions inherent in the Mainstream GUM pro-
cedure and there are applications in metrology in which users of the GUM are
unclear whether the limitations apply or the assumptions can be expected to
hold in their circumstances. In such situations “other analytical or numerical
methods” can be used, as is stated in the GUM (in Clause G.1.5). This “gen-
eral” approach is contrasted in this guide with the mainstream approach. In
particular, the limitations and assumptions at the basis of the “easy-to-use”
formula inherent in Mainstream GUM are highlighted.

The GUM (through Clause G.1.5) does permit the practitioner to employ
alternative techniques whilst remaining “GUM-compliant”. However, if such
techniques are to be used they must have certain credentials in order to permit
them to be applied in a sensible way. Part of this guide is concerned with these
techniques, their properties and their credentials.

It is natural, in examining the credentials of any alternative scientific ap-
proach, to re-visit established techniques to confirm or otherwise their appro-
priateness. In that sense it is appropriate to re-examine the principles of Main-
stream GUM to discern whether they are fit for purpose. This task is not possi-
ble as a single “general health check”. The reason is that there are circumstances
when the principles of Mainstream GUM cannot be bettered by any other can-
didate technique, but there are others when the quality of the Mainstream GUM
approach is not quantified. The circumstances in which Mainstream GUM is
unsurpassed are when the model relating the input quantities X1, . . . , Xn to the
measurand Y is additive, viz.,

Y = a1X1 + · · ·+ anXn,

for any constants a1, . . . , an, any value of n, however large or small, and when
the input quantities Xi have independent Gaussian distributions. In other cir-
cumstances, Mainstream GUM generally provides an approximate solution: the
quality of the approximation depends on the model and its input quantities and
the magnitudes of their uncertainties. The approximation may in many cases
be perfectly acceptable for practical application. In some circumstances this
may not be so. See the statement in Clause G.6.6 of the GUM.

The concept of a model remains central to these alternative approaches. This
guide advocates the use of such an alternative approach in circumstances where
there is doubt concerning the applicability of Mainstream GUM. Guidance is
provided for this approach. The approach is numerical, being based on Monte
Carlo Simulation. It is thus computationally intensive, but nevertheless the
calculation times taken are often only seconds or sometimes minutes on a PC,
unless the model is especially complicated.

It is shown how the alternative approach can also be used to validate Main-
stream GUM and thus in any specific application confirm (or otherwise) that
this use of the GUM is fit for purpose, a central requirement of the Quality
Management Systems operated by many organizations. In instances where the
approach indicates that the use of Mainstream GUM is invalid, the approach
can itself subsequently be used for uncertainty evaluation, in place of Main-
stream GUM, in that it is consistent with the general principles (Clause G.1.5)
of the GUM.

An overall attitude taken to uncertainty evaluation in this guide is that it
consists of two phases. The first phase, formulation, constitutes building the

4



Uncertainty and Statistical Modelling

model and quantifying statistically its inputs. The second phase, calculation,
consists of using this information to determine the model output quantity and
quantify it statistically.

The concepts presented are demonstrated by examples, some chosen to em-
phasize a particular point and others taken from particular areas of metrology.
Each of these examples illustrates Mainstream GUM principles or the recom-
mended alternative approach or both, including the use of the latter as a vali-
dation facility for the former.

An account is included of the current situation concerning the revision of the
GUM, a process that is taking place under the auspices of the Joint Committee
for Guides in Metrology (JCGM).5 This revision is concerned with amplifying
and emphasizing key aspects of the GUM in order to make the GUM more read-
ily usable and more widely applicable. Any published revision to the GUM, at
least in the immediate future, would make no explicit change to the existing
document, but enhance its provisions by the addition of supplemental guides.
The approaches to uncertainty evaluation presented here are consistent with
the developments by the JCGM in this respect, as is the classification of model
types given. This best-practice guide will be updated periodically to account
for the work of this committee. It will also account for the work of standards
committees concerned with various aspects of measurement uncertainty, aware-
ness of requirements in the areas indicated by workshops, etc., organized within
SSf M and elsewhere, and technical developments.

Two of the authors of this guide are members of the Working Group of the
JCGM that is concerned with GUM revision and of other relevant national or
international committees, including British Standards Committee Panel SS/6/-
/3, Measurement Uncertainty, CEN/BT/WG 122, Uncertainty of Measurement,
and ISO/TC 69/SC 6, Measurement Methods and Results.

It is assumed that users of this guide have reasonable familiarity with the
GUM.

A companion document [20] provides specifications of relevant software for
uncertainty evaluation when applying some of the principles considered here.

1.4 Acknowledgements

This guide constitutes part of the deliverable of Project 1.2, “Uncertainties
and statistical modelling” within the UK Department of Industry’s National
Measurement System Software Support for Metrology Programme 1998–2001.
It has benefited from many sources of information. These include

• SSf M workshops

• The Joint Committee for Guides in Metrology

• National and international standards committees

• Consultative Committees of the Comitè International des Poids et Mesures
(CIPM)

• The (UK) Royal Statistical Society

5The Web address of the JCGM is http://www.bipm.fr/enus/2 Committees/JCGM.shtml.
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• The National Engineering Laboratory

• National Measurement Institutes

• The United Kingdom Accreditation Service

• UK industry

• Conferences in the Advanced Mathematical and Computational Tools in
Metrology series [12, 13, 14, 15, 16]

• Literature on uncertainties, statistics and statistical modelling

• Many individual contacts.6

6The contacts are far too numerous to mention. Any attempt to enumerate them would
risk offence to those unintentionally omitted.
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Chapter 2

Introduction

2.1 Uncertainty and statistical modelling

Measurements contain errors. When a quantity is measured, the actual value
obtained is not the true value, but some value that departs from it to a greater
or lesser extent—an approximation to it. If that quantity were to be measured
a number of times, in the same way and in the same circumstances, a different
value each time would in general be obtained.1 These repeated measurements
would form a “cluster”, the “size” of which would depend on the nature and
quality of the measurement process. The “centre” of the cluster would provide
an estimate of the quantity that generally can be expected to be more reliable
than individual measurements. The “size” of the cluster would provide quanti-
tative information relating to the quality of this central value as an estimate of
the quantity. It will not furnish all the information of this type, however. The
measuring instrument is likely to provide values that are not scattered about
the true value of the quantity, but about some other value offset from it.

Take the domestic bathroom scales. If they are not set such that the display
reads zero when there is nobody on the scales, when used to weigh a person or an
object the observed weight can be expected to be offset from what it should be.
No matter how many times the person’s weight is taken and averaged,2 because
the scatter of values would be centred on an offset value, the effect of this offset is
inherently present in the result. A further effect is that scales possess “stiction”,
i.e., they do not necessarily return consistently to the “starting position” each
time a person gets on and off.

There are thus two main effects, in this example and in general. The first is
a “random” effect associated with the fact that when a measurement is repeated
it will generally be different from the previous value. It is random in that there
is no way to predict from previous measurements exactly what the next one
would be.3 The second effect is a systematic effect (a bias) associated with the
fact that the measurements contain an offset.

In practice there can be a number of contributions to the random effect and

1This statement assumes that the recording device has sufficient resolution to distinguish
between different values.

2There is a variety of ways of taking an average, but the choice made does not affect the
argument.

3If a prediction were possible, allowance for the effect could be made!

7



Software Support for Metrology Best Practice Guide No. 6

to the systematic effect, both in this situation and in many other situations.
Depending on the application, the random effect may dominate, the systematic
effect may dominate or the effects may be comparable.

In order to make a statement concerning the measurement of the quantity of
interest it is typically required to provide a value for the measurand and an asso-
ciated “uncertainty”. The value is (ideally) a “best estimate” of the measurand
and the uncertainty a numerical measure of the quality of the estimate.

The above discussion concerns the measurement of a particular quantity.
However, the quantity actually measured by the device or instrument used is
rarely the result required in practice. For instance, the display on the bathroom
scales does not correspond to the quantity measured. The raw measurement
might be that of the extension of a spring in the scales whose length varies
according to the load (the weight of the person on the scales).

The raw measurement is therefore converted or transformed into the required
form, the measurement result. The latter is an estimate of the measurand, the
physical quantity that is the subject of measurement.

For a perfect (linear) spring, the conversion is straightforward, being based
on the fact that the required weight is proportional to the extension of the
spring. The display on the scales constitutes a graduation or calibration of the
device.

For a domestic mercury thermometer, the raw measurement is the height of
a column of mercury. This height is converted into a temperature using another
proportional relationship: a change in the height of the column is proportional
to the change in temperature, again a calibration.

A relationship of types such as these constitutes a rule for converting the
raw measurement into the measurement result.

In metrology, there are very many different types of measurement and there-
fore different rules. Even for one particular type of measurement there may
well be more than one rule, perhaps a simple rule (e.g., a proportional rule) for
everyday domestic use, and a sophisticated rule involving more complicated cal-
culations (a nonlinear rule, perhaps) that is capable of delivering more accurate
results for industrial or laboratory purposes.

Often, measurements are repeated and averaged in some way to obtain a
more reliable result.

The situation is frequently more general in another way. There is often a
number of different raw measurements that contribute to the estimation of the
measurand. Here, the concern is not simply repeated measurements, but intrin-
sically different measurements, e.g., some temperature measurements and some
displacement measurements. Also, there may be more than one measurand. For
instance, by measuring the length of a bar at various temperatures it may be
required to determine the coefficient of expansion of the material of which the
bar is made and also to determine the length of the bar at a temperature at
which it may not have been measured, e.g., 27 ◦C, when measurements were
made at 20, 22, 24, 26, 28 and 30 ◦C.

In addition to raw data, representing measurements, there is another form
of data that is also frequently fed into a rule in order to provide a measurement
result. This additional data relates to a variety of “constants”, each of which
can be characterized as having a value and a distribution about it to represent
the imperfect knowledge of the value. An example is a material constant such
as modulus of elasticity, another is a calibrated dimension of an artefact such
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as a length or diameter, and another is a correction arising from the fact that a
measurement was made at, say, 22 ◦C rather than the stipulated 20 ◦C.

The complete set of data items that are required by the rule to enable a
measurement result to be produced is known as the input quantities. The rule
is usually referred to as a model because it is the use of physical modelling
(or perhaps empirical modelling or both types of modelling) [22] of a measure-
ment, measurement system or measurement process that enables the rule to be
established. The model output quantities are used to estimate the measurands.

This guide is concerned with the problem of characterizing the nature of the
errors in the estimates of the measurands given the model, the input quantities
and information concerning the errors in these quantities. Some advice is given
on assigning statistical properties to the input quantities. Because the form
of the model varies enormously over different metrology disciplines, it is largely
assumed that a (physical) model is available (having been derived by the experts
in the appropriate area). The use of statistical modelling is considered, however,
in the context of capturing the error structure of a problem. Model validity is
not specifically addressed. Information is available in a companion publication
[9].

In particular, this guide reviews several approaches to the problem, including
the widely-accepted GUM approach. It reviews the interpretation of the GUM
that is made by many organisations and practitioners concerned with measure-
ments and their analysis and the presentation of measurement results (Section
6 of this guide).

The point is made that this interpretation is subject to limitations that are
insufficiently widely recognized. These limitations have, however, been indicated
[61] and are discussed in Section 5.4.

An approach free from these limitations is presented. It is a numerical
method based on the use of Monte Carlo Simulation (MCS) and can be used

1. in its own right to characterise the nature of the inexactness in the mea-
surement results,

2. to validate the approach based on the above-mentioned interpretation of
the GUM.

MCS itself has deficiencies. They are of a different nature from those of
Mainstream GUM, and to a considerable extent controllable. They are identified
in Section 7.6.

The GUM does not refer explicitly to the use of MCS. However, this option
was recognized during the drafting of the GUM. The ISO/IEC/OIML/BIPM
draft (First Edition) of June 1992, produced by ISO/TAG 4/WG 3, states, as
Clause G.1.5:

If the relationship between Y [the model output] and its input quan-
tities is nonlinear, or if the values available for the parameters char-
acterizing the probabilities of the Xi [the inputs] (expectation, vari-
ance, higher moments) are only estimates and are themselves char-
acterized by probability distributions, and a first order Taylor ex-
pansion is not an acceptable approximation, the distribution of Y
cannot be expressed as a convolution. In this case, numerical meth-
ods (such as Monte Carlo calculations) will generally be required
and the evaluation is computationally more difficult.
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In the published version of the GUM [1], this Clause had been modified to
read:

If the functional relationship between Y and its input quantities
is nonlinear and a first-order Taylor expansion is not an acceptable
approximation (see 5.1.2 and 5.1.5), then the probability distribution
of Y cannot be obtained by convolving the distributions of the input
quantities. In such cases, other analytical or numerical methods are
required.

The interpretation made here of this re-wording is that “other analytical or
numerical methods” cover any other appropriate approach.4

This interpretation is consistent with that of the National Institute of Stan-
dards and Technology of the United States [61]:

[Clause 6.6] The NIST policy provides for exceptions as follows (see
Appendix C):

It is understood that any valid statistical method that is technically
justified under the existing circumstances may be used to determine
the equivalent of ui [the standard deviation of the ith input quan-
tity], uc [the standard deviation of the output], or U [the half-width
of a coverage interval for the output, under a Gaussian assumption].
Further, it is recognised that international, national, or contractual
agreements to which NIST is a party may occasionally require de-
viation from NIST policy. In both cases, the report of uncertainty
must document what was done and why.

Further, within the context of statistical modelling in analyzing the homo-
geneity of reference materials, it is stated [39]:

[Clause 9.2.3] ... where lack of a normal distribution is a problem, ro-
bust or non-parametric statistical procedures may be used to obtain
a valid confidence interval for the quantity of interest.

This guide adheres to these broad views. The most important aspect re-
lates to traceability of the results of an uncertainty evaluation. An uncertainty
evaluation should include

1. all relevant information relating to the model and its input quantities,

2. an estimate of the measurand and an associated coverage interval (or
coverage region),

3. the manner in which these results were determined, including all assump-
tions made.

There would also appear to be valuable and relevant interpretations and
considerations in the German standard DIN 1319 [27]. An official English-
language translation of this standard would not seem to be available.

There has been a massive investment in the use of the GUM. It is essential
that this investment is respected and that this guide is not seen as deterring

4That this interpretation is correct has been confirmed by JCGM/WG1.
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the continuation of its use, at least in circumstances where such usage can be
demonstrated to be appropriate.

In this respect, a recommended validation procedure for Mainstream GUM is
provided in this guide. The attitude taken is that if the procedure demonstrates
in any particular circumstance that this usage is indeed valid, the Mainstream
GUM procedure can legitimately continue to be used in that circumstance. The
results of the validation can be used to record the fact that fitness for purpose
in this regard has been demonstrated. If the procedure indicates that there
is doubt concerning the validity of Mainstream GUM usage, there is a case
for investigation. Since in the latter case the recommended procedure forms
a constituent part (in fact the major part) of the validation procedure, this
procedure can be used in place of the Mainstream GUM approach. Such use of
an alternative procedure is consistent with the broader principles of the GUM
(Section 5 of this guide and above).

There is another vital issue facing the metrologist. In a measurement situa-
tion it is necessary to characterise the nature of the errors in the input quantities
and to develop the model for the measurand in terms of these quantities. Car-
rying out these tasks can be far from easy. Some advice is given in this regard.
However, written advice can only be general, although examples and case stud-
ies can assist. In any one circumstance, the metrologist has the responsibility,
perhaps with input from a mathematician or statistician if appropriate, of char-
acterizing the input quantities and building the model.

The Mainstream GUM procedure and the recommended approach using
Monte Carlo Simulation both utilize this information (but in different ways).
As mentioned, the former possesses some limitations that the latter sets out to
overcome (but again see Section 7.7 concerning implementation).

There is often doubt concerning the nature of the errors in the input quanti-
ties. Are they Gaussian or uniform, or do they follow some other distribution?
The metrologist needs to exercise best judgement in this regard (see Section
4.3). Even then there may be aspects that cannot fully be quantified.

It is regarded as important that this incomplete lack of knowledge, that
can arise in various circumstances, is handled by repeating the exercise of char-
acterizing the errors in the outputs. By this statement it is meant that any
assumptions relating to the nature of the errors in the inputs are changed to
other assumptions that in terms of the available knowledge are equally valid.
Similarly, the information that leads to the model may be incomplete and there-
fore changes to the model consistent with this lack of knowledge made.

The sensitivity of the output quantities can then be assessed as a function
of such perturbations by repeating the evaluation.

The attitude here is that whatever the nature of the input quantities and
the model, even (and especially!) if some subjective decisions are made in their
derivation, the nature of the outputs should then follow objectively and without
qualification from this information, rather than in a manner that is subject to
limitations, in the form of effects that are difficult to quantify and beyond the
control of the practitioner.

In summary, the attitude that is generally promoted in this guide is that
as far as economically possible use should be made of all available knowledge.
In particular, (a) the available knowledge of the input quantities should be em-
bodied within their specification, (b) a model that relates these input quantities
to the measurand should carefully be constructed, and (c) the calculation of
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uncertainty should be carried out in terms of this information.

2.2 The objective of uncertainty evaluation

Uncertainty evaluation is the generic term used in this guide to relate to any
aspect of quantifying the extent of the inexactness in the outputs of a model
to inexactness in the model input quantities. Also, the model itself may be
inexact. If that is the case, the nature and extent of the inexactness also need
to be quantified and its influence on the output quantities established. The
inexactness of the model outputs is also influenced by any algorithm or software
that is used to determine the output quantity given the input quantities. Such
software may incorporate approximate algorithmic techniques that impart an
additional uncertainty.

Example 1 Approximate area under a calibration curve

Consider a model necessitating the determination of an integral representing
the area under a calibration curve. An algorithm might utilize the trapezoidal
or some other approximate numerical quadrature rule. Numerical errors will
be committed in the use of this rule. They depend on the spacing of the ordi-
nates used and on the extent of the departure of the curve from linearity. The
consequent uncertainties would need to be evaluated.

The uncertainty evaluation process could be at any level required, depending
on the application. At one extreme it could involve determining the standard
deviation of an estimate of the measurand for a simple model having a single
output. At the other extreme it might be necessary to determine the joint prob-
ability distribution of a set of output quantities of a complicated complex-valued
model exhibiting non-Gaussian behaviour, and from that deduce a coverage re-
gion for the vector of measurands at a stipulated level of probability.

The objective of uncertainty evaluation can be stated as follows:
Derive (if not already available) a model relating a set of measurands to (in-

put) quantities (raw measurements, suppliers’ specifications, etc.) that influence
them. Establish the statistical properties of these input quantities. Calculate (in
a sense required by context) estimates of the measurands and the uncertainty of
these estimates.

A mathematical form for this definition is given in Section 3.1.
This objective may in its context be well defined or not. In a case where it

is well defined there can be little dispute concerning the nature of the results,
presuming they have been calculated correctly. If it is not well defined, it will be
necessary to augment the information available by assumptions or assertions in
order to establish a well-defined problem. It will be necessary to ensure that the
assumptions and assertions made are as sensible as reasonably possible in the
context of the application. It will equally be necessary to make the assumptions
and assertions overt and to record them, so that the results can be reproduced
and defended, and perhaps subsequently improved.

In very many cases the objective of uncertainty evaluation will be to deter-
mine a coverage interval (or coverage region) for the measurand. Commonly, this
coverage interval will be at the 95% level of probability. There is no compelling
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scientific reason for this choice. It almost certainly stems from the traditional
use of 95% in statistical hypothesis testing [11], although the reasons for the
choice in that area are very different. The overriding reason for the use of 95%
in uncertainty evaluation is a practical one. It has become so well established
that for purpose of comparison with other results its use is almost mandated.
Another strong reason for the use of 95% is the considerable influence of the
Mutual Recognition Arrangement concerning the comparison of national mea-
surement standards and of calibration and measurement certificates issued by
national metrology institutes [7]. See Appendix A.4 for a discussion.

Such an interval will be referred to in this guide as a 95% coverage interval.
It can be argued that if a coverage interval at some other level of probability

is quoted, it can be “converted” into one at some other level. Indeed, a similar
operation is recommended in the GUM, when information concerning an input
distribution is converted into a standard deviation (standard uncertainty in
GUM parlance). The standard deviations together with sensitivity coefficients
are combined to produce the standard deviation of the output, from which a
coverage interval is obtained by multiplication by a factor. The factor is selected
based on the assumption that the output distribution is Gaussian.

That this process gives rise to difficulties in some cases can be illustrated
using a simple example. Pre-empting the subsequent discussion, consider the
model Y = X1 + X2 + . . ., where X1, X2, . . . are the input quantities and Y
the output quantity. Assume that all terms but X1 have a small effect, and X1

has a uniform distribution. The above-mentioned GUM procedure gives a 95%
coverage interval for Y that is longer than the 100% coverage interval for X1!

Instances of this type would appear to be not uncommon. For instance, the
EA guide [28] gives three examples arising in the calibration area.

This possibility is recognised by the GUM:

[GUM Clause G.6.5] ... Such cases must be dealt with on an individ-
ual basis but are often amenable to an analytic treatment (involving,
for example, the convolution of a normal distribution with a rectan-
gular distribution ...

The statement that such cases must be dealt with on an individual basis would
appear to be somewhat extreme. Indeed, such a treatment is possible (cf. Sec-
tions 5.1 and 5.1.2), but is not necessary, since Monte Carlo Simulation (Section
7) generally operates effectively in cases of this type.

The interpretation [63] of the GUM by the United Kingdom Accreditation
Service recommends the inclusion of a dominant uncertainty contribution by
adding the term linearly to the remaining terms combined in quadrature. This
interpretation gives rise generally to a more valid result, but remains an approx-
imation. The EA Guide [28] provides some analysis in some such cases.

It is emphasized that a result produced according to a fixed recipe that is
not universally applicable, such as Mainstream GUM, may well be only approx-
imately correct, and the degree of approximation difficult to establish.

The concern in this guide is with reliable uncertainty evaluation, in that the
results will not exhibit inconsistent or anomalous behaviour, however simple or
complicated the model may be.

Appendix A reviews some relevant statistical concepts.
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2.3 Standard deviations and coverage intervals

The most important statistic to a metrologist is a coverage interval correspond-
ing to a specified probability, e.g., an interval that is expected to contain 95%
of the values that could be attributed to the measurand. This interval is the
95% coverage interval considered above.

There is an important distinction between the nature of the information
needed to determine the standard deviation of the estimate of the output quan-
tity and a coverage interval for the measurand.

The mean and standard deviation can be determined knowing the distribu-
tion of the output. The converse is not true.

Example 2 Deducing a mean and standard deviation from a distribution, but
not the converse

As an extreme example, consider a random variable X that can take only two
values, a and b, with equal probability. The mean is µ = (a + b)/2 and the
standard deviation σ = |b − a|/2. However, given only the values of µ and σ,
there is no way of deducing the distribution. If a Gaussian distribution were
assumed, it would be concluded that the interval µ ± 1.96σ contained 95% of
the distribution. In fact, the interval contains 100% of the distribution, as does
the interval µ± σ, of about half that length.

Related comments are made in Clause G.6.1 of the GUM. Although knowl-
edge of the mean and standard deviation is valuable information, without further
information it conveys nothing about the manner in which the values are dis-
tributed.5 If, however, it is known that the underlying distribution is Gaussian,
the distribution of the output quantity is completely described since just the
mean and standard deviation fully describe a Gaussian distribution. A sim-
ilar comment can be made for some other distributions. Some distributions
require additional parameters to describe them. For instance, in addition to the
mean and standard deviation, a Student’s-t distribution requires the number of
degrees of freedom to specify it.

Thus, if the form of the distribution is known, from analysis, empirically
or from other considerations, the determination of an appropriate number of
statistical parameters will permit it to be quantified. Once the quantified form
of the distribution is available, it is possible to calculate a percentile, i.e., a
value for the measurement result such that, according to the distribution, the
corresponding percentage of the possible values of the measurement result is
smaller than that value. For instance, if the 25-percentile is determined, 25%
of the possible values can be expected to lie below it (and hence 75% above it).
Consider the determination of the 2.5-percentile and the 97.5-percentile. 2.5%
of the values will lie to the left of the 2.5-percentile and 2.5% to the right of the
97.5-percentile. Thus, 95% of the possible values of the measurement result lie
between these two percentiles. These points thus constitute the endpoints of a
95% coverage interval for the measurand.

The 2.5-percentile of a distribution can be thought of as a point a certain
number of standard deviations below the mean and the 97.5-percentile as a
point a certain number of standard deviations above the mean. The numbers of

5See, however, the maximum entropy considerations in Appendix D.2.
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standard deviations to be taken depends on the distribution. They are known
as coverage factors. They also depend on the coverage interval required, 90%,
95%, 99.8% or whatever.

For the Gaussian distribution and the Student’s-t distribution, the effort
involved in determining the numbers of standard deviations to be taken has
been embodied in tables and software functions.6 Since these distributions are
symmetric about their means, the coverage factors for pairs of percentiles that
sum to 100, such as the above 2.5- and 97.5-percentiles, are identical. This
statement is not generally true for asymmetric probability distributions.

In order to determine percentiles in general, it is necessary to be able to
evaluate the inverse G−1 of the distribution function G (Section A.3 in Appendix
A). For well-known distributions, such as Gaussian and Student’s-t, software
is available in many statistical and other libraries for this purpose. Otherwise,
values of xp = G−1(p) can be determined by using a zero finder to solve the
equation G(xp) = p (cf. Section 6.2.3).

The coverage interval is not unique, even in the symmetric case. Suppose
that a probability density function (Appendix A) g(x) = G′(x) is unimodal
(single-peaked), and that a value of α, 0 < α < 1, is given. Consider any
interval [a, b] that satisfies

G(b)−G(a) =
∫ b

a

g(x)dx = 1− α.

Then [52],

1. [a, b] is a 100(1−α)% coverage interval. For instance, if a and b are such
that

G(b)−G(a) = 0.95,

95% of the possible values of x lie between a and b,

2. The shortest such interval is given by g(a) = g(b). a lies to the left of the
mode (the value of x at which g(x) is greatest) and b to the right,

3. If g(x) is symmetric, not only is the shortest such interval given by g(a) =
g(b), but also a and b are equidistant from the mode.

6In most interpretations of the GUM (Mainstream GUM), the model output is taken as
Gaussian or Student’s-t.
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Chapter 3

Uncertainty evaluation

3.1 The problem formulated

As discussed in Section 2.1, regardless of the field of application, the physical
quantity of concern, the measurand, can rarely be measured directly. Rather,
it is determined from a number of contributions, or input quantities, that are
themselves measurements or derived from other measurements or information.

The fundamental relationship between the input quantities and the measur-
and is the model. The input quantities, n, say, in number, to the model are
denoted by X = (X1, . . . , Xn)T and the measurand, the output quantity, by Y .1

The model
Y = f(X) = f(X1, . . . , Xn)

can be a mathematical formula, a step-by-step calculation procedure, computer
software or other prescription. Figure 3.1 shows an input-output model to
illustrate the “propagation of uncertainties” (GUM [1]). The model has three
input quantities X = (X1, X2, X3)T, where Xi is estimated by a value xi with
standard deviation u(xi). It has a single output Y ≡ Y1, with estimated value
y = y1 and standard deviation u(y) = u(y1). The estimate of the measurand is
termed the measurement result. In a more complicated circumstance, the errors
in the input quantities would be interrelated, i.e., correlated, and additional
information would be needed to quantify the correlations.

There may be more than one output quantity, viz., Y = (Y1, . . . , Ym)T. In
this case the model is

Y = f(X) = f(X1, . . . , Xn),

where f(X) = (f1(X), . . . , fm(X)), a vector of model functions. In full, this
“vector model” is

Y1 = f1(X1, . . . , Xn),
Y2 = f2(X1, . . . , Xn),

...
Ym = fm(X1, . . . , Xn).

1A single input quantity (when n = 1) will sometimes be denoted by X (rather than X1).
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x1, u(x1) -

x2, u(x2) -

x3, u(x3) -

f(X) - y, u(y)

Figure 3.1: Input-output model illustrating the propagation of uncertainties.
The model has three input quantities X = (X1, X2, X3)T, estimated by a value
xi with standard deviation u(xi), for i = 1, 2, 3. There is a single measur-
and (output quantity) Y ≡ Y1, estimated by the measurement result y, with
standard deviation u(y).

The output quantities Y would almost invariably be correlated in this case,
since in general each output quantity Yj , j = 1, . . . ,m, would depend on several
or all of the input quantities.

A model with a single output quantity Y is known as a univariate model. A
model with m (> 1) output quantities Y is known as a multivariate model.

In statistical parlance all input quantities Xi are regarded as random vari-
ables, regardless of their source (cf. [65]). The model function f(X1, . . . , Xn) is
an estimator. The output quantity Y is also a random variable. Realizations
xi of the Xi are estimates of the inputs. f(x1, . . . , xn) provides an estimate
of the output quantity, the measurand.2 A comparable statement applies to a
multivariate model.

3.2 The two phases of uncertainty evaluation

Uncertainty evaluation consists of two phases, formulation and calculation. In
Phase 1 the metrologist derives the model, perhaps in collaboration with a
mathematician or statistician. The metrologist also provides the model inputs,
qualitatively, in terms of their probability density functions (pdf’s) (uniform,
Gaussian, etc.) (Appendix A.2), and quantitatively, in terms of the parameters
of these functions (e.g., central value and semi-width for a uniform pdf, or mean
and standard deviation for a Gaussian pdf), including correlation parameters for
joint pdf’s. These pdf’s are obtained from an analysis of series of observations

2This estimator may be biased. The mean of the probability density function of the output
quantity is unbiased. It is expected that the bias will be negligible in many cases. The bias
results from the fact that the value of Y obtained by evaluating the model at the input
estimates x is not in general equal to the value of Y given by the mean of the pdf g(y)
of Y . These values will be equal when the model is linear in X, and close if the model is
mildly nonlinear or if the uncertainties of the input quantities are small. See Section 3.2.
A demonstration of the bias is given by the simple model Y = X2, where X is assigned
a Gaussian distribution with mean zero and standard deviation u. The mean of the pdf
describing the input quantity X is zero. The corresponding value of the output quantity Y is
also zero. However, the mean value of the pdf describing Y cannot be zero, since Y ≥ 0, with
equality occurring only when X = 0. (This pdf is in fact a χ2 distribution with one degree of
freedom.)
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  g(x1)

  g(x2)

  g(x3)

f(X)   g(y)

Figure 3.2: Input-output model illustrating the propagation of distributions.
The model has three input quantities X = (X1, X2, X3)T, where X1 has a
Gaussian pdf g1(x1), X2 a triangular pdf g2(x2) and X3 a (different) Gaussian
pdf g1(x3). The single output quantity Y ≡ Y1 is illustrated as being asymmet-
ric, as can arise for nonlinear models where one or more of the input pdf’s has
a large standard deviation.

[1, Clauses 2.3.2, 3.3.5] or are based on scientific judgement using all the relevant
information available [1, Clauses 2.3.3, 3.3.5], [61].

In the case of uncorrelated input quantities and a single output quantity,
Phase 2 of uncertainty evaluation is as follows. Given the model Y = f(X),
where X = (X1, . . . , Xn)T, and the pdf’s gi(xi) (or the distribution functions
Gi(xi)) of the input quantities Xi, for i = 1, . . . , n, determine the pdf g(y) (or
the distribution function G(y)) for the measurand Y .

The mean of g(y) is an unbiased estimate of the output quantity.
Figure 3.2 shows the counterpart of Figure 3.1 in which the pdf’s (or the

corresponding distribution functions) of the input quantities are propagated
through the model to provide the pdf (or distribution function) of the measur-
and.

It is reiterated that once the pdf (or distribution function) of the measurand
Y has been obtained, any statistical information relating to Y can be produced
from it. In particular, a coverage interval for the measurand at a stated level of
probability can be obtained.

When the input quantities are correlated, in place of the n individual pdf’s
gi(xi) i = 1, . . . , n, there is a joint pdf g(x). An example of a joint pdf is
the multivariate Gaussian pdf (Section 4.3.2). In practice this joint pdf may
be decomposable. For instance, in some branches of electrical, acoustical and
optical metrology, the input quantities may be complex-valued. The real and
imaginary parts of each such variable are generally correlated and thus each has
an associated 2× 2 covariance matrix. See Section 6.2.5. Otherwise, the input
quantities may or may not be correlated.
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If there is more than one output quantity, Y, these outputs will almost
invariably need to be described by a joint pdf g(y), since each output quantity
generally depends on all the input quantities. See Section 9.7 for an important
exception.

Phase 2, calculation, involves the derivation of the measurement result and
the associated uncertainty, given the information provided by Phase 1. It is
computational and requires no further information from the metrology applica-
tion. The uncertainty is commonly provided as a coverage interval. A coverage
interval can be determined once the distribution function G(y) (Appendix A)
has been derived. The endpoints of a 95% coverage interval3 are given (Section
2.3) by the 0.025- and 0.975-quantiles of G(y), the α-quantile being the value
of y such that G(y) = α.4

It is usually sufficient to quote the uncertainty of the measurement result
to one or at most two significant figures. See Section 7.7.1. In general, fur-
ther figures would be spurious, because the information provided in Phase 1
is typically imprecise, involving a number of estimates and assumptions. The
attitude taken here though is that the second phase should not exacerbate the
consequences of the decisions made in Phase 1.5

The pdf g(y) pertaining to Y cannot generally be expressed in simple or even
closed mathematical form. Formally, if δ(·) denotes the Dirac delta function,

g(y) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x)δ(y − f(x))dxndxn−1 . . . dx1 (3.1)

[19]. Approaches for determining g(y) or G(y) are addressed in Section 5. That
several approaches exist is a consequence of the fact that the determination of
g(y) and/or G(y) ranges from being very simple to extremely difficult, depending
on the complexity of the model and its input pdf’s.

395% coverage intervals are used in this guide, but the treatment applies more generally.
4There are many intervals having a coverage probability of 0.95, a general interval being

given by the β- and (0.95 + β)-quantiles of G(y), with 0 ≤ β ≤ 0.05. The choice β = 0.025 is
natural for a G(y) corresponding to a symmetric pdf g(y). It also has the shortest length for
a symmetric pdf and, in fact, for a unimodal pdf (Section 2.3).

5This attitude compares with that in mathematical physics where a model (e.g., a partial
differential equation) is constructed and then solved. The construction involves idealizations
and inexact values for dimensional quantities and material constants, for instance. The solu-
tion process involves the application of hopefully sensible and stable methods in order to make
some supported statements about the quality of the solution obtained to the posed problem.
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Chapter 4

The main stages in
uncertainty evaluation

In this guide, uncertainty evaluation is regarded as consisting of the two main
phases indicated in Chapter 3.1.

Phase 1, formulation, consists of providing the model and quantifying the
pdf’s of the model input quantities. The constituent parts of Phase 1 are the
three steps

1. Statistical modelling.

2. Input-output modelling.

3. Assignment of probability density functions to the input quantities.

Phase 2, calculation, consists of deriving the measurement result and its
uncertainty, given the information provided by Phase 1. The constituent parts
of Phase 2 are the two steps

1. Determination of the probability density function of the output quantity.

2. Provision of a coverage interval for the measurand.

4.1 Statistical modelling

Statistical modelling can be beneficial when a model is complicated, but is
not always needed for simpler models. It is concerned with developing the
relationships between the measurements made, the measurands and the errors
of measurement.

Example 3 Straight-line calibration

A common example of statistical modelling arises when fitting a calibration
curve to data, representing, say, the manner in which displacement varies with
temperature. The input quantities consist, for i = 1, . . . , n, say, of a measured
value xi of a response variable x corresponding to the value ti of a control or
independent variable t.
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Consider a situation in which the ti are known with negligible error and xi

has error ei. Suppose that the nature of the calibration is such that a straight-
line calibration curve y = a1 + a2x provides an adequate realization. Then, as
part of the statistical modelling process [22], the equations

xi = a1 + a2ti + ei, i = 1, . . . , n, (4.1)

relate the observations xi to the calibration parameters a1 (intercept) and a2

(gradient) of the line and the errors ei in the measurements.
In order to establish values for a1 and a2 it is necessary to make an appro-

priate assumption about the nature of the errors ei [22]. For instance, if they
can be regarded as realizations of independent, identically distributed Gaussian
variables, the best unbiased estimate of the parameters is given by least squares.
Specifically, a1 and a2 are given by minimizing the sum of the squares of the
deviations xi − a1 − a2ti, over i = 1, . . . , n, with respect to a1 and a2, viz.,

min
a1,a2

n∑
i=1

(xi − a1 − a2ti)2.

The model equations (4.1), with the solution criterion (least-squares), constitute
the results of the statistical modelling process for this example.

There may be additional criteria. For instance, a calibration line with a
negative gradient may make no sense in a situation where the gradient represents
a physical parameter whose “true” value must always be greater than or equal
to zero (or some other specified constant value). The overall criterion in this
case would be to minimize the above sum of squares with respect to a1 and
a2, as before, with the condition that a2 ≥ 0. This problem is an example of a
constrained least-squares problem, for which sound algorithms exist [22]. In this
simple case, however, the problem can be solved more easily for the parameters,
but the uncertainties associated with a1 and a2 require special consideration.
See the example in Section 9.6.

Appendix B discusses some of the modelling issues associated with the sta-
tistical modelling approach of this section and the input-output modelling ap-
proach of the next.

4.2 Input-output modelling

Input-output modelling is the determination of the model required by the GUM,
also termed here the GUM model, in its approach to uncertainty evaluation and,
as indicated in Section 3.1, also in this guide. An input-output model can be
derived from a statistical model or formed directly.

In the GUM [1] a measurement system is modelled, as in Section 3.1, by
a functional relationship between measured or influence quantities (the input
quantities) X = (X1, . . . , Xn)T and the measurand (the output quantity) Y in
the form

Y = f(X). (4.2)

In practice this functional relationship does not apply directly to all measure-
ment systems encountered, but may instead (a) take the form of an implicit rela-
tionship, h(Y,X) = 0, (b) involve a number of measurands Y = (Y1, . . . , Ym)T,
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or (c) involve complex-valued quantities. Section 6 is concerned with the man-
ner in which each model type within this classification can be treated within a
“GUM” setting. Here, the concern is with the basic form (4.2).

Example 4 How long is a piece of string?

The problem of establishing a simple model for the length of a piece of string,
when measured with a tape, is considered (cf. [5]). The measurand is the length
of the string. As part of Phase 1, formulation, a measurement model for string
length is established. It depends on several input quantities. This model is
expressed here as the sum of four terms. Each of these terms, apart from the
first, is itself expressed as a sum of terms.1 The model takes the form2

String length = Measured string length (1)
+ Tape length error (2)
+ String length error (3)
+ Measurement process error (4),

where

(1) Measured string length = Average of a number of repeated
measurements

(2) Tape length error = Length error due to tape calibration
imperfections

+ Extension in tape due to stretching
(negative if there is shrinking rather
than stretching)

+ Reduction in effective length of tape
due to bending of the tape

(3) String length error = Reduction in effective string length due
to string departing from a straight line

+ Reduction in string length as a result
of shrinking (negative if there is
stretching rather than shrinkng)

(4) Measurement process error = Length error due to inability to align
end of tape with end of string due to
fraying of the string ends

+ Length error due to the tape and the
string not being parallel

+ Error committed in assigning a
numerical value to the measurement
indicated by the tape

+ Length error arising from the
statistics of averaging a finite number
of repeated measurements.

Once this model is in place statements can be made about the nature of the
various terms in the model as part of the first phase of uncertainty evaluation.

1 The model can therefore be viewed as a multi-stage model (Section 4.2.3, although of
course by substitution it can be expressed as a single model.

2In this formula, the error terms are to be expressed in a way that ensures each contribution
has the correct numerical (±) sign.
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Phase 2 can then be carried out to calculate the required uncertainty in the
measured length.

There may be some statistical modelling issues in assigning pdf’s to the input
quantities. For instance, a Student’s-t distribution would probably be assigned
to the measured string length (1), based on the mean and standard deviation of
the repeated measurements, with a number of degrees of freedom one less than
the number of measurements. As another instance, for tape bending, this effect
can be approximated by a χ2 variable3 which does not, as required, have zero
mean, since the minimum effect of tape bending on the measurand is zero.

Example 5 Straight-line calibration (re-visited)

For the straight-line calibration example of Section 4.1 (Example 3), the GUM
model constitutes a formula or prescription (not in general necessarily explicit in
form) derived from the results of the statistical modelling process. Specifically,
the measurement results a = (a1, a2)T are given in terms of the input quantities
x = (x1, . . . , xn)T by an equation of the form

Ha = q. (4.3)

(Compare [22], [1, Clause H.3].) Here, H is a 2× 2 matrix that depends on the
values of the ti, and q a 2 × 1 vector that depends on the values of the ti and
the xi.

By expressing this equation as the formula

a = H−1q, (4.4)

a GUM model for the parameters of the calibration line is obtained. It is, at
least superficially, an explicit expression4 for the measurement result a. The
form (4.3) is also a GUM model, with the measurement result defined implicitly
by the equation (Section 6).

4.2.1 Correlated model parameters

In a range of circumstances some choice is possible regarding the manner in
which the input quantities to the model is provided. A group of input quantities
can be correlated in that each depends on a common effect. It may be possible
to re-express such input quantities so that the common effect appears explicitly
as a further input quantity. By doing so, this cause of correlation is eliminated,
with the potential for a simplification of the analysis. See GUM Clause F.1.2.4.
Also, an example in mass comparison [2] illustrates the principle.

3This degree of sophistication would not be warranted when measuring the length of a
piece of string. It can be important in other applications.

4The expression is termed superficially explicit, since the determination of a via a formal
matrix inversion is not recommended [22]. The form (4.4), or forms like it in other such appli-
cations, should not be regarded as an implementable formula [22]. Rather, numerically stable
matrix factorization algorithms [35] should be employed. This point is not purely academic.
The instabilities introduced by inferior numerical solution algorithms can themselves be an
appreciable source of uncertainty. It is not straightforward to quantify this effect.
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An example of this approach, in the context of measuring the sides of a
right-angled triangle, is given in Section 9.4.

In general, the use of modelling principles, before uncertainties are assigned,
is often helpful in understanding correlation effects.

4.2.2 Constrained uncertainty evaluation

Constrained uncertainty evaluations arise as a consequence of physical limits
or conditions associated with the measurands or the model input quantities.
Instances include chemical concentrations, departures from perfect form in di-
mensional metrology and limits of detection.

When chemical concentrations are measured, it will be appropriate to ensure
that in cases where all constituent parts are measured the estimates of the
measurands sum to unity (or 100%). The associated estimates will inevitably
be correlated even if the raw measurements have mutually independent errors.

In assessing the departure from perfect form in dimensional metrology, the
measurand is a quantity such as flatness, roundness, perpendicularity, concen-
tricity, etc. These quantities are defined as the unsigned departure, assessed
in an unambiguously defined way, of a real feature from an ideal feature, and
are often very small, but nonzero. Any uncertainty statement associated with
such a measurand that is based on a pdf that can embrace zero is physically
unrealistic. Such a pdf is invariably asymmetric.

In triangulation, photogrammetry and similar applications, using theodo-
lites, laser interferometers and metric cameras, redundancy of measurement
ensures that improved uncertainties are obtained compared with the use of a
near-minimal number of measurements. The measurands, point co-ordinates,
distances, etc. are interrelated by equality conditions deducible from geometri-
cal considerations.

Within analytical chemistry, measurements of, e.g., trace elements, are made
at the limit of detection. At this limit the measurement uncertainty is compa-
rable to the magnitude of the measurement itself. This situation has aspects in
common with that in dimensional metrology above, although there are appre-
ciable contextual differences.

The Eurachem Guide to quantifying uncertainty in analytical measurement
states

[32, Appendix F] At low concentrations, an increasing variety of
effects becomes important, including, for example,

• the presence of noise or unstable baselines,

• the contribution of interferences in the (gross) signal

• . . .

Because of such effects, as analyte concentrations drop, the rela-
tive uncertainty associated with the result tends to increase, first to
a substantial fraction of the result and finally to the point where
the (symmetric) uncertainty interval includes zero. This region is
typically associated with the practical limit of detection for a given
method.

. . .
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Ideally, therefore, quantitative measurements should not be made in
this region. Nevertheless, so many materials are important at very
low levels that it is inevitable that measurements must be made, and
results reported, in this region. . . . The ISO Guide to the Expression
of Uncertainty in Measurement does not give explicit instructions
for the estimation of uncertainty when the results are small and the
uncertainties large compared to the results. Indeed, the basic form
of the ‘law of propagation of uncertainties’ . . . may cease to apply
accurately in this region; one assumption on which the calculation
is based is that the uncertainty is small relative to the value of
the measurand. An additional, if philosophical, difficulty follows
from the definition of uncertainty given by the ISO Guide: though
negative observations are quite possible, and even common in this
region, an implied dispersion including values below zero cannot
be “reasonably ascribed to the value of the measurand” when the
measurand is a concentration, because concentrations themselves
cannot be negative.

. . .

Observations are not often constrained by the same fundamental
limits that apply to real concentrations. For example, it is perfectly
sensible to report an ‘observed concentration’, that is, an estimate
below zero. It is equally sensible to speak of a dispersion of possible
observations which extends into the same region. For example, when
performing an unbiased measurement on a sample with no analyte
present, one should see about half of the observations falling below
zero. In other words, reports like

observed concentration = 2.4± 8 mg l−1

observed concentration = −4.2± 8 mg l−1

are not only possible; they should be seen as valid statements.

. . .

It is the view of the authors of this guide that these statements by Eurachem
are sound. However, this guide takes a further step, related to modelling the
measurement and through the use of the model defining and making a statement
about the measurand, as opposed to the observations. Because a (simple) model
is established, this step arguably exhibits even closer consistency with the GUM.

The Eurachem statements stress that observations are not often constrained
by the same fundamental limits that apply to real concentrations. It is hence
appropriate to demand that the measurand, defined to be the real analyte con-
centration (or its counterpart in other applications) should be constrained to
be non-negative. Also, the observations should not and cannot be constrained,
because they are the values actually delivered by the measurement method.
Further, again consistent with the Eurachem considerations, assign a pdf to
the input quantity, viz., a best (unconstrained) estimate of the analyte con-
centration, that is symmetric about that value. Thus, the input, X, say, is
unconstrained analyte concentration with a symmetric pdf, and the output, Y ,
say, real analyte concentration, with a pdf to be determined.
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In terms of these considerations an appropriate GUM model is5

Y = max(X, 0). (4.5)

The rationale behind this simple choice of model is as follows. Should the mean
x of the observations prove to be non-negative, it would naturally be taken as
the estimate of the measurand Y . Such a value would conventionally be used
at points removed from the limit of detection. Should x prove to be negative,
it cannot be used as a physically feasible estimate of Y , since by definition Y
is the real analyte concentration and hence non-negative. Taking y = 0 in this
case is the optimal compromise between the observed values and feasibility (the
closest feasible value to the mean observation).

An example illustrating the use of this model is given in Section 9.5.

4.2.3 Multi-stage models

Multi-stage models are widespread in metrology. Even the string example (Sec-
tion 4.2, Example 4) can be interpreted this way. Any situation in which the
results and uncertainties from one evaluation become the input quantities and
associated uncertainties to a subsequent stage constitute (part of) a multi-stage
model. Within a model there are frequently sub-models, and therefore multi-
staging arises also in this context. Examples abound, especially with calibration.

In the first stage of a multi-stage model, the metrologist is responsible for
providing all the input quantities. In subsequent stages, the input quantities
constitute some or all of the output quantities from previous stages plus, possi-
bly, further input quantities from the metrologist.

Example 6 Example of a multi-stage model, in calibration

An example of a multi-stage model occurs regularly in calibration, when it is
necessary to establish and use a calibration curve. The following description is in
the context of Mainstream GUM. There would be an analogous description for
circumstances where it was necessary to avoid the Mainstream GUM limitations
and perhaps use MCS instead.

Stage 1 involves analysing measurement data that is a function of a second
variable, e.g., displacement as a function of applied force. The displacement val-
ues, and perhaps the values of the applied force, if they are not known accurately,
constitute the (first-stage) model input quantities. The associated uncertainties,
and covariances, if relevant, would be assigned. The model specifies the process
of fitting a calibration curve to the data to provide the coefficients or parame-
ters of the curve. These parameters constitute the model output quantities. If
there is more than parameter (the usual case), their values will almost invariably
be correlated, since each parameter will generally be a function of the (same)
input data. Thus, the output quantities will have an associated non-diagonal
covariance matrix.

Stage 2 involves using the output quantities from Stage 1, viz., the curve
parameters and their covariance matrix, as input quantities to a model that
constitutes a rule for evaluating the calibration curve for appropriate values of

5Related considerations [46, p129] show that if an observation v is N(θ, 1) distributed, i.e.,
drawn from a Gaussian distribution with mean zero and standard deviation unity, but θ ≥ 0,
the maximum likelihood estimate of θ is max(v, θ).

26



Uncertainty and Statistical Modelling

the argument (force in the above instance).6 The output quantities will be the
values of the curve at these designated points, together with their associated
covariance matrix. Again, because these curve values all depend in general on all
the inputs, the curve parameters, this covariance matrix will be non-diagonal.

There may be no further stage, since the “interpolated” values provided by
the calibration curve may be the primary requirement.

Otherwise, Stage 3 will be the use of the curve values obtained in Stage 2
to provide further measurement results. As an example, take the area under
(a specified portion of) the calibration curve. Suppose that this area is to be
determined by numerical quadrature because of the impossibility of carrying
out the integration analytically. This result can typically be expressed as a
linear combination of the curve values provided as input quantities. As another
instance, if more than one measurement result is required, e.g., estimates of
gradients to the curve at various points, these again can typically be expressed
as linear combinations of the curve values. They will, for similar reasons to
those above, have a non-diagonal covariance matrix.

The concepts described in Chapter 6 can be applied to the above stages. The
various categories within the classification of that chapter would relate to the
various types of calibration model, depending on whether it can be expressed
explicitly or implicitly or is real-valued or complex-valued. The model is almost
always multivariate in the sense of Chapter 6, i.e., it has more than one output.

4.3 Assignment of the input probability density
functions

The provision of input probability density functions (pdf’s) requires the assign-
ment of appropriate statistical distributions (Gaussian, uniform, etc.) to the
model input quantities. It can be a challenging step in the formulation stage,
Phase 1, of uncertainty evaluation. Valuable guidance is given in the GUM on
this matter. Additional aspects are considered here.

Sometimes these input pdf’s will be the result of a previous “uncertainty
calculation” within the context of a multi-stage model (Section 4.2.3).

In the above straight-line calibration example (Section 4.1, Example 3, and
Section 4.2, Example 5), the pdf for each input quantity would have been taken
as Gaussian, under the assumption that this knowledge of the errors in the
measurement process was available. There would be other types of measurement
for which the errors would be expected to be Poissonian, for example. There
are many other types of measurement error.

Information concerning the underlying distribution should be deduced in any
one instance from all the knowledge that can economically be brought to bear
(Section D.2).

6In many situations, it is necessary to use the calibration curve inversely. Typically, the
data in Stage 1 represents a set of standards, e.g., established responses to specified concen-
trations. At Stage 2, it is required to use the calibration curve to determine the concentration
corresponding to to an observed response. The mathematical function representing the curve
then constitutes an implicit model (Section 6.2.3) (e.g., if the calibration curve is a fifh-degree
polynomial).
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There is an important class of metrology problems, viz., calibration as above
or generally the analysis of experimental data. Suppose that there is a large
number of “similar” measurements, such as in the straight-line calibration ex-
ample in Section 4.1. Suppose also that the errors in these measurements can
be taken as uncorrelated. For a calibration function that can be expressed as
a linear combination of calibration parameters, as above, these parameters can
formally be written as a linear combination of the measured values. For the large
number of measurements envisaged, the statistics of the situation are such that
almost regardless of the nature of the distribution of the errors in the measure-
ments, a linear combination of the measurements, as here, can be expected to
have essentially a Gaussian distribution, as a consequence of the Central Limit
Theorem [51, p165]. When there are several such parameters (output quanti-
ties) they will almost invariably be correlated, since each is a linear combination
of the input quantities. These paramaters would be described by a multivariate
(joint) Gaussian distribution. See Section 4.3.2.

The straight line above would have an intercept and a gradient that are
correlated.7

Even if the calibration function depends nonlinearly on its parameters, by
linearizing this function about the solution values of the parameters, to first
order similar considerations apply as in the linear case [22]. In cases of doubt the
validation procedures of Section 8 should be undertaken to determine whether
linearization is justified.

The GUM [1] discriminates between the Type A evaluation of uncertainty—
that based on statistical means—and the Type B evaluation of uncertainty—
that based on non-statistical means. Although this terminology is sometimes
used in this guide for alignment with the GUM, no great distinction is made
here, since all types of uncertainties can be classified by appealing to a unifying
principle (Section D.2). It is sometimes more useful to examine the distinction
between errors in a measurement that can be regarded as random and those
that can be regarded as systematic.8 In some instances a systematic error can
be treated as a bias and handled as part of statistical modelling (Sections 4.1
and 9.4).

Recommended assignments for Type A evaluations of uncertainty for three
important types of input quantity follow. They are based on the application
of the Principle of Maximum Entropy (Section D.2). For each type the assign-
ment applies on the condition that no information other than that specified is
available. A “small number” of repeated observations is taken as ten or fewer.
A “large number” is taken as greater than 20.

7It is possible in some applications such as this one to re-express (re-parametrise) the
straight line such that its parameters are uncorrelated [22]. Also see Section 4.2.1. The
example in Clause H.3 of the GUM illustrates this point. Such re-parametrisation is not always
a practical proposition, however, because of the conflict between a numerically or statistically
convenient representation and the requirements of the application. However, the possibility of
re-parametrization should always be considered carefully for at least two reasons. One reason
is that the result corresponding to a sound parametrization can be obtained in a numerically
stable manner [22], whereas a poor parametrization can lead to numerically suspect results.
Another reason is that a poor parametrization leads to artificially large correlations in the
output quantities. Decisions about the natural correlation present in the results cannot be
made in terms of these induced correlation effects.

8The subdivision into Type A and Type B evaluations of uncertainty will correspond in
some instances to random and systematic effects, respectively, but not in all circumstances.
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A small number of observations. The small number of repeated observa-
tion is regarded as being drawn from an unknown distribution. Take the
mean and standard deviation of the mean. Assign a Gaussian pdf with
these parameters to the input quantity.

A small number of observations drawn from a Gaussian distribution.
The small number of repeated observation is regarded as being drawn from
a Gaussian distribution. Take the mean and standard deviation of the
mean. Assign a Student’s-t pdf with these parameters, with a number of
degrees of freedom one less than the number of observations, to the input
quantity.

A large number of observations. A different attitude can legitimately be
taken if a set of repeated observations is reasonably large. The observa-
tions, when portrayed as a histogram, for instance, might indicate features
such as asymmetry or bimodality. If no additional information is available,
rather than using the PME, the data itself can be used to “define” its own
pdf. Specifically, the pdf is given by assigning a probability 1/q, where q
is the number of observations, to each value of the input quantity that is
equal to one of these observations, and zero probability to all other values
of the input quantity. Sampling from the pdf would take place simply by
selecting a data value at random, with equal probability attached to all
values. Any value selected is replaced before a further value is sampled.

An intermediate number of observations. The treatment of an interme-
diate number of observations is more problematical. It will be adressed in
a future edition of this guide.

4.3.1 Univariate Gaussian distribution

There are many circumstances where measurements contain errors that stem
from a large number of sources and no one contribution dominates. In these
situations it is reasonable to regard the measurements as having Gaussian errors.
One common instance is a parameter arising from least-squares fitting (Section
4.3).

The (univariate) Gaussian or normal distribution with mean µ and standard
deviation σ in the variable X has the pdf

g(x) =
1

σ
√

2π
exp

{
−(x− µ)2/(2σ2)

}
, −∞ < x < ∞.

The standardized Gaussian distribution in the variable Z, with zero mean and
unit standard deviation, is

φ(z) =
1√
2π

exp(−z2/2), −∞ < z < ∞.

Its distribution function, denoted by Φ(z), is

Φ(z) =
∫ z

−∞
φ(v)dv.
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The probability that X lies between c and d, where c < d, is

1
σ
√

2π

∫ d

c

exp
{
−(x− µ)2/(2σ2)

}
dx =

∫ (d−µ)/σ

(c−µ)/σ

exp(−z2/2) dz

= Φ((d− µ)/σ)− Φ((c− µ)/σ).

The inverse function Φ−1(p) gives the value of z such that Φ(z) = p, a stated
probability.

Tables and software for Φ and its inverse are widely available.

4.3.2 Multivariate Gaussian distribution

In general, multivariate distributions can be defined in terms of joint probability
density functions g(x). The multivariate Gaussian distribution (or multinormal
distribution) with mean µ = (µ1, . . . , µp)T and covariance matrix V of order p
has pdf

g(x) =
1

(det(2πV ))1/2
exp

{
−1

2
(x− µ)TV −1(x− µ)

}
.

The set of parameters arising from least-squares fitting (Section 4.3.1) can often
be described by such a distribution.

4.3.3 Univariate uniform distribution

It is often assumed that when a model input quantity is given in a manufac-
turer’s specification in the form of a “plus/minus accuracy statement”, the cor-
responding pdf should be taken as uniform with limits dictated by the accuracy
statement. If there is no other information available, this attitude is consistent
with the Principle of Maximum Entropy (PME) (Appendix D).

The uniform or rectangular distribution has pdf

g(x) =
{

1/(b− a), a ≤ x ≤ b,
0, otherwise.

It states that any value of x in the interval [a, b] is equally probable and that
the probability of a value of x outside this interval is zero.

Consider two values c and d, where c < d. The probability that X lies
between c and d is straightforwardly confirmed to be

∫ d

c

g(x)dx =


0, d ≤ a,
(d− a)/(b− a), c ≤ a ≤ d ≤ b,
(d− c)/(b− a), a ≤ c < d ≤ b,
(b− c)/(b− a), a ≤ c ≤ b ≤ d,
0, b ≤ c.

The authors of this guide regard the above assumption with some scepticism.
Although the PME is perfectly reasonable in the light of such information, it is
the information that leads to its being invoked in this manner that should be
questioned. The belief in uniform distributions as being “right” would appear
to be an overused and misused belief. It can lead to anomalies.

Can taking a uniform pdf be a better model in general than using, say, a
Gaussian? There are indeed genuine instances for the use of a uniform pdf. An
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Figure 4.1: The errors in successive values displayed by a simulated instrument
having a resolution of two decimal places. The values shown are the differences
between the values of sin t that would be displayed by the instrument and the
actual values of sin t, for t = 1.00, 1.01, . . . , 1.10 radians.

example is the digital resolution of an instrument, in which the error can be
regarded as being equally likely anywhere within plus or minus half a unit in
the last displayed digit.9

The quantization error in analogue to digital conversion also falls (with some
exceptions) into this category. There would appear to be few other genuine ex-
amples. It would be desirable, especially in a competitive environment or when
particularly reliable uncertainty statements are required, to approach suppli-
ers to relate the provided accuracy statement to the context in which it was
made. The supplier might, for example, be speaking loosely, e.g., to imply a
99% coverage interval, say, with the previously unmentioned information that
an underlying Gaussian pdf was reasonable. The contextual information might
relate, for example, to reject rates in a production process.

Information is available [10] on a method for reducing the uncertainty as-
sociated with instrument resolution when a series of observations is taken. It
involves randomizing the zero setting, where this is possible, before taking each
observation. The mean of a set of q observed values so obtained can be expected
to have an uncertainty that is smaller than that of an individual observation
by a factor of

√
q. This result is to be compared with conventional repeated

observations in situations where the uncertainties are dominated by those of
the instrument resolution: the mean of the observations has no better property
than the individual observations.

9This statement is correct for a single reading. There are additional considerations for
a sequence of readings corresponding to a slowly varying signal. The errors in the resolved
sequence are serially correlated as a consequence of the resolution of the instrument. Figure 4.1
shows the errors in successive values displayed by a simulated instrument having a resolution
of two decimal places. The values shown are the differences between the values of sin t that
would be displayed by the instrument and the actual values of sin t, for t = 1.00, 1.01, . . . , 1.10
radians. Any analysis of such data that did not take account of the very obvious serial
correlation would yield a flawed result. The effects of serial correlation depend on the relative
sizes of the uncertainties in the signal, the instrument resolution and the magnitudes of the
changes in successive values of the signal (the last-mentioned item depending on the sampling
rate). In hopefully many cases they will be negligible, but it is appropriate to establish when
this is indeed the case. In the context of calibration it is stated [28], but the point is more
general, that the measurement uncertainty associated with the calibration of all low-resolution
indicating instruments is dominated by the finite resolution provided this resolution is the only
dominant source in the uncertainty budget.
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Figure 4.2: A uniform pdf with inexact endpoints. The diagram is conceptual:
the “height” of the pdf would in fact vary with the endpoints in order to maintain
unit area.

4.3.4 Inexactly specified uniform distributions

Consider a random variable X having nominally a uniform pdf, specified in
terms of its lower limit a and upper limit b. These endpoints may be known
inexactly. For instance, suppose the values a = −1 and b = 1 are given, only
the quoted figures are reliable, and no other information is available. Then, it
can be concluded that the actual value of a lies between −1.5 and −0.5 and b
between 0.5 and 1.5.10 Thus, X in fact lies in the broader interval [−1.5, 1.5]
rather than [−1, 1]. See Figure 4.2. How important is this consideration in
practice? In what manner is X distributed over this interval?

These considerations are a direct counterpart of those in the GUM in which
an input standard uncertainty is obtained from a Type B evaluation and cannot
be treated as exactly known. See GUM Clause G.4.2. There the inexactness is
manifested as a finite number of effective degrees of freedom.

Suppose that the left endpoint is regarded as lying in the interval [a−d, a+d]
and the right endpoint in [b− d, b + d]. It is assumed that “the d” is the same
for each endpoint. The treatment can be generalised if needed. It is henceforth
assumed that the actual value of the left endpoint is equally likely to lie anywhere
in [a − d, a + d], with a similar statement for the right endpoint.11 Thus, the
left and right endpoints are taken as uniform random variables, A and B, say.
It follows that

X = A + (B −A)V,

where A is uniform over [a− d, a + d], B is uniform over [b − d, b + d] and V
is uniform over [0, 1].

A Monte Carlo Simulation using the introductory example, viz., with a =
−1.0, b = 1.0 and d = 0.5 gave the histogram in Figure 4.3, as a scaled estimate
of the pdf of X.

Note the “shape” of the pdf. It is uniform over the region between the inner
extremities of the inexact endpoints, i.e., where there is no doubt concerning

10If instead the values a = −1.0 and b = 1.0 were quoted, it would be concluded that the
left endpoint were between −1.05 and −0.95 and the right endpoint between 0.95 and 1.05.

11An alternative approach can be used. It could be assumed, for instance, that each endpoint
can be regarded as a Gaussian (rather than a uniform) variable, centred on that endpoint,
with a stated standard deviation. The analysis and the result would differ from that here.
The choice of approach would be made using expert judgement.
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Figure 4.3: A histogram produced using Monte Carlo Simulation for the model
X = A + (B − A)V , where A is uniform over [a− d, a + d], B is uniform over
[b− d, b + d] and V is uniform over [0, 1], with a = −1.0, b = 1.0 and d = 0.5.
Figure 4.2 refers. The histogram provides a scaled estimate of the pdf of X.
It corresponds to an input quantity that is defined by a uniform distribution
between inexact limits, theirselves being represented by uniform distributions.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
x 10

4

Figure 4.4: As Figure 4.3 except that the endpoints are related as described in
the text.

their location. Between the inner and outer extremities it reduces from the
uniform height to zero in what is approximately a quadratic manner. Beyond the
outer extremities the pdf is zero. The piecewise nature of the pdf is comparable
to that for the sum of uniform pdf’s, where the pieces form polynomial segments
[26].

The standard deviation of X, assuming the exactness of the endpoints (equiv-
alent to taking d = 0), is 1/

√
3 = 0.577. That for the above finite value of d

is 0.625. As might be expected, the inexactness of the endpoints increases the
value. The extent to which this increase (8%) is important depends on circum-
stances.

There will be situations where the inexact endpoints would be expected to
“move together”, i.e., the knowledge of one of them would imply the other. In
this circumstance the pdf of X is slightly different. See Figure 4.4. The standard
deviation of X is now 0.600 (a 4% increase over that for d = 0), roughly halfway
between that for the above pdf and the pure uniform pdf. The flanks of the pdf
now have greater curvature.

The final statement to be made here concerning uniform distributions with
inexactly defined endpoints is that the effects of such endpoints on the evaluation
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of uncertainty increase with the relative amount of inexactness. This point
is qualitatively consistent with the use of an effective number of degrees of
freedom, as above, in the GUM. Increased inexactness will give rise to a smaller
number and yield greater uncertainty through a larger coverage factor from the
Student’s-t distribution.

The main message is that inexactness in the information that leads to assign-
ing pdf’s not only modifies the forms of those pdf’s, but influences the relevant
standard deviations.

4.3.5 Taking account of the available information

It is beyond the scope, in this first edition of this best-practice guide, to state
how all information available can properly be taken into account. Some remarks
are made, however, indicating how the Principle of Maximum Entropy can be
used to advantage. A future edition will provide more details.

If a set of values, in the form of repeated observations, is available, and no
other information is provided, the PME would mandate the use of a Gaussian
pdf with mean and standard deviation deduced from the measurements.

If only a lower and an upper limit were available the PME would support
the choice of a uniform pdf, as above.

Suppose a prior pdf, say a Gaussian, were available, perhaps from historical
information such as that obtained in previous calibrations. Suppose that further
measurements were available. The use of the PME would permit both sources of
information to be combined to deliver a Students-t pdf that could be expected
to be more reliable than the pdf from either source alone.

Suppose a prior uniform pdf were available, perhaps from sound knowledge
of limits, and that one measurement was made. From the PME, the uniform
pdf that would be inferred from the limits alone would be modified by the
measurement. The GUM provides (in GUM Clause 4.3.8) the pdf in this case.

Other cases can be handled, and give superior results in general than if
treated without taking account of the available information. Such cases may
require the services of a statistician.

Appendix D considers some of the issues involved.
It is relevant to note that in the context of Mainstream GUM, which works

only with the standard deviations (and the means) of the input pdf’s, the GUM
states

[GUM Clause E.4.2] When the standard uncertainty of an input
quantity cannot be evaluated by analysis of the results of an ad-
equate number of repeated observations, a probability distribution
must be adopted based on knowledge that is much less extensive
than might be desirable. That does not, however, make the distri-
bution invalid or unreal; like all probability distributions it is an
expression of what knowledge exists.

This attitude is consistent with a Bayesian view [65].
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4.4 Determining the output probability density
function

The pdf of the output quantity is completely defined by the model together with
the assigned input pdf’s. Appropriate analysis or calculation is needed, however,
to determine it. Chapter 5 covers candidate approaches for forming the output
pdf in the univariate case, and indicates its counterpart in the multivariate case.

4.5 Providing a coverage interval

The provision of a coverage interval is the use of the pdf of the output quantity
to determine a lower limit and an upper limit of an interval that can be expected
to contain 95% (or some other specified proportion) of the values that can be
reasonably be attributed to the measurand. See Chapter 5 for methods for
determining the pdf of the output quantity. See Section 2.3 for information on
coverage intervals. Coverage intervals can be obtained objectively from a pdf.
They can also be obtained from coverage factors and an assumption concerning
the pdf.

4.5.1 Coverage intervals from distribution functions

If the distribution function is known, a coverage interval can be obtained as
indicated in Section 2.3.

4.5.2 Coverage intervals from coverage factors and an as-
sumed form for the distribution function

The Mainstream GUM approach (see GUM Clause G.1.1) to determining a
coverage interval is as follows. The aim (using the notation of the GUM) is to
provide, using the estimate y of the measurand Y and the standard uncertainty
u(y) of the estimate, an expanded uncertainty Up = kpu(y). With the estimate
y, this value Up defines an interval [y−Up, y +Up] that has a specified coverage
probability p.

In summarizing its recommendations for determining this coverage interval,
the GUM states:

[GUM Clause G.6.1] The coverage factor kp that provides an inter-
val having a level of confidence p close to a specified level can only
be found if there is extensive knowledge of the probability distribu-
tion of each input quantity and if these distributions are combined
to obtain the distribution of the output quantity. The input esti-
mates xi and and their standard uncertainties u(xi) by themselves
are inadequate for this purpose.

Further,

[GUM Clause G.6.2] Because the extensive computations required to
combine probability distributions are seldom justified by the extent
and reliability of the available information, an approximation to the
distribution of the output quantity is acceptable. Because of the
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Central Limit Theorem, it is usually sufficient to assume that the
probability distribution of (y − Y )/uC(y) is the t-distribution and
take kp = tp(νeff), with the t-factor based on an effective degrees
of freedom νeff of uC(y) obtained from the Welch-Satterthwaite for-
mula ...

The statement12 concerning the extensive computation to combine probability
distributions is no longer tenable, with PCs faster than 1 GHz being common-
place. Unless the model is complicated, the determination of the pdf of the
output quantity and hence the required coverage interval to the required num-
ber of figures, can, with todays’ PCs, be carried out in computation times of
minutes or even seconds (Section 7.3.1).

4.5.3 An approximation is acceptable, but is it an accept-
able approximation?

The statement from the GUM reproduced in Section 4.5.2 concerning the Cen-
tral Limit Theorem demands investigation. It is accepted that it is usually
sufficient to assume that the output is distributed as Student’s-t. The difficulty
lies in deciding when this assumption can be made. The GUM offers no specific
guidance in this regard. This document supports that approach when it can be
justified, but recommends that in any case of doubt the validation approach of
Section 8.2 should be employed.

However, the GUM does provide some advice regarding the circumstances
when Mainstream GUM can be expected to hold:

[GUM Clause 6.6] For many practical measurements in a broad range
of fields, the following conditions prevail:

- the estimate y of the measurand Y is obtained from estimates xi of
a significant number of input quantities Xi that are describable
by well-behaved probability distributions, such as the normal
and rectangular distributions;

- the standard uncertainties u(xi) of these estimates, which may
be obtained from either Type A or Type B evaluations, con-
tribute comparable amounts to the combined standard uncer-
tainty uC(y) of the measurement result y;

- the linear approximation implied by the law of propagation of
uncertainty is adequate (see 5.1.2 and E.3.1);

- the uncertainty of uC(y) is reasonably small because its effective
degrees of freedom νeff has a significant magnitude, say greater
than 10.

Under these circumstances, the probability distribution character-
ized by the measurement result and its combined standard uncer-
tainty can be assumed to be normal because of the Central Limit
Theorem; and uC(y) can be taken as a reasonably reliable estimate
of the standard deviation of the normal distribution because of the
significant size of νeff.

12The GUM uses the notation uC(y) for combined standard uncertainty, i.e., that associated
with y. This guide simply uses u(y).
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This advice is sound in a qualitative sense but, again, it is unclear when the
circumstances hold. The problem is that the distinction between Phase 1 and
Phase 2 of uncertainty evaluation13, as indicated in Section 4, becomes blurred.
The intention of the subdivision into the two phases is to permit all decisions
to be made in Phase 1 and the mechanical calculations to be made in Phase 2.

In terms of the set of conditions in GUM Clause 6.6, listed above, it is unclear
what is meant by

• “a significant number of input quantities”

• “well-behaved probability distributions”

• the standard uncertainties of the xi contributing comparable amounts14

• the adequacy of linear approximation, and

• the output uncertainty being reasonably small.

The concern is that because none of these considerations is explicitly quanti-
fied, different practitioners might adopt different interpretations of the same
situation, thus causing divergence of results.

Further, an approximation is acceptable, but is it an acceptable approxima-
tion?

4.6 When the worst comes to the worst

Consider a situation in which no assumption is to be made about the pdf of the
output quantity other than an estimate of its mean value y and the standard
deviation u(y) of this estimate. One reason for wishing to make no assumption
is that it may be difficult or impossible to obtain distributional information
about some of the input quantities and it is deemed inappropriate to invoke the
Principle of Maximum Entropy. In such a circumstance, a conservative estimate
of a coverage interval can be obtained using some traditional results from the
statistical literature.15 Two results are possible. One result is general, applying
to all distributions. The other relates to instances in which one is prepared to
make a single assumption, viz., that the distribution is symmetric.

4.6.1 General distributions

Suppose that it is required to quote an uncertainty interval for the measurand
Y corresponding to a coverage probability of 95%, and that nothing is known
about the distribution.

13The JCGM/WG1 has agreed that this distinction is useful. It will form part of a supple-
mental guide being produced by JCGM/WG1.

14This statement is taken here to mean that the standard uncertainties of the input quan-
tities, when scaled by the magnitudes of the corresponding sensitivity coefficients, contribute
comparable amounts.

15Such an estimate is inconsistent with the intention of the GUM which promotes the use
of a realistic coverage interval:

[GUM, Clause 0.4] . . . the ideal method for evaluating and expressing uncertainty
in measurement should be capable of readily providing such an interval, in par-
ticular, one with a coverage probability or level of probability that corresponds
in a realistic way with that required.

There may, however, be special situations where a conservative estimate is useful.
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The coverage interval y ± ku(y), where k = 4.47, contains at least 95% of
the distribution of y-values.

This result is derived from Chebyshev’s inequality which states that the prob-
ability that Y lies in the interval y ± ku(y) is at least 1 − k−2. The value of k
for which 1− k−2 = 0.95 is 4.47. It is stressed that this result applies regardless
of the distribution. By its nature it cannot be as sharp as an interval derived
from knowledge of the pdf of y, e.g.,

• If Y is uniform this interval is y ± 1.65u(y)

• If Y is Gaussian it is y ± 1.96u(y).

The length of the interval derived from Chebyshev’s inequality is 2.7 times the
length of that for uniform Y and 2.3 times that for Gaussian Y .

Note. These results applies only if the number of degrees of freedom is
infinite, or in practice large. Otherwise, the k-factor becomes inflated, as in the
case of Student’s-t distribution [53].

4.6.2 Symmetric distributions

If it is known that the distribution is symmetric, tighter results based on Gauss’s
inequality are possible.

The coverage interval y ± ku(y), where k = 2.98, contains at least 95% of
the distribution of y-values.

Gauss’s inequality states that the probability that Y lies in the interval
y±ku(y) is at least 1− 4

9k−2. The value of k for which 1− 4
9k−2 = 0.95 is 2.98.

It is noted that this interval is only approximately 50% longer than that
when Y is Gaussian (Section 4.6.1).

Note. These results applies only if the number of degrees of freedom is
infinite, or in practice large. Otherwise, the k-factor becomes inflated, as in the
case of Student’s-t distribution.

4.6.3 Making stronger assumptions

Tighter, distribution-free, coverage intervals can be obtained if stronger assump-
tions are made, such as unimodality (single-peakedness) as well as symmetry of
the pdf.

38



Uncertainty and Statistical Modelling

Chapter 5

Candidate solution
approaches

This chapter covers candidate solution processes for the calculation phase, Phase
2, of the uncertainty evaluation problem formulated in Section 3.1. The start-
ing point is (i) the availability of a model f or f that relates the input quan-
tities X = (X1, . . . , Xn)T to the scalar measurand Y or vector measurand
Y = (Y1, . . . , Ym)T through Y = f(X) or Y = f(X), and (ii) assigned probabil-
ity density functions (pdf’s) g1(X1), . . . , gn(Xn) for the input quantities. If the
input quantities are correlated, they will have a joint pdf.

It is required to determine the pdf g(Y ) for the output quantity y or the
(joint) pdf g(Y) for Y.

Once g(Y ) has been obtained a 95% coverage interval for the (scalar) mea-
surand Y can be derived. Once g(Y) has been obtained, a 95% coverage region
for the (vector) measurand Y can be derived.

Three approaches to the determination of the output pdf for Y or Y are
considered and contrasted:

1. Analytical methods

2. Mainstream GUM

3. Numerical methods.

All three approaches are consistent with the GUM. Mainstream GUM is the
procedure that is widely used and summarized in GUM Clause 8. Analytical
methods and numerical methods fall in the category of “other analytical and
numerical methods” (GUM Clause G.1.5). Under the heading of “Analytical
methods” below, mention is also made of “Approximate analytical methods”.

5.1 Analytical methods

Analytical methods to obtain the pdf of Y or Y are preferable in that they do not
introduce any approximation, but can be applied in relatively simple cases only.
Their application may require the services of an expert. A treatment of such
methods, based essentially on the use of formula (3.1) is available [26]. Instances
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Figure 5.1: A uniform probability density function (left) for the input X and
the corresponding probability density function for the output Y , where Y is
related to X by the model Y = log(X).

that can be so handled include additive models, Y = a1X1 + . . . + anXn, where
all Xi are Gaussian or all are uniform. In the latter case, unless n is small, the
multipliers ai must be equal and the semi-widths of the uniform pdf’s identical1

to avoid formidable algebra.

5.1.1 Single input quantity

The case of a single input quantity (n = 1) is amenable to analytic treatment [51,
pp57-61]. If the model function f(X) is differentiable and strictly monotonic,
Y has the pdf

g(y) = g(f−1(y))|d(f−1(y))/dy|. (5.1)

Example 7 A logarithmic transformation

If the model is Y = ln(X) with X having uniform pdf in [a, b], the application
of Formula (5.1) gives

G(y) =

 0, y ≤ ln(a),
(exp(y)− a)/(b− a), ln(a) ≤ y ≤ ln(b),
1, ln(b) ≤ y.

(cf. Section 4.3.5). Figure 5.1 depicts the uniform pdf (left) for X and the
corresponding pdf for Y in the case a = 1, b = 3.

This case is important in, say, electromagnetic compatibility measurement,
where conversions are often carried out between quantities expressed in linear
and decibel units using exponential or logarithmic transformations [62].

Example 8 A linear combination of Gaussian distributions

Suppose the model is
Y = a1X1 + · · ·+ anXn,

where a1, . . . , an are specified constants, and, for i = 1, . . . , n, Xi has a Gaussian
distribution with mean µi and standard deviation σi. Then Y has a Gaussian

1In this case Y is a B-spline with uniform knots [18].
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Figure 5.2: The probability density function for the sum Y = X1 + X2 of two
uniform distributions X1 and X2 of identical semi-widths.

distribution with mean µ = a1µ1 + · · ·+ anµn and standard deviation (a2
1σ

2
1 +

· · ·+ a2
nσ2

n)1/2.

Example 9 The sum of two uniform distributions with the same semi-widths

Suppose the model is
Y = X1 + X2

and, for i = 1, 2, Xi has a uniform pdf with mean µi and semi-width a (and hence
standard deviation a/

√
3). Then Y has a symmetric triangular pdf g(y) with

mean µ = µ1+µ2, semi-width 2a and standard deviation a
√

2/3. Geometrically,
this pdf, for the case µ1 + µ2 = 0, takes the form

g(y) =


0, y ≤ −2a,
(2a + y)/(4a2), −2a ≤ y ≤ 0,
(2a− y)/(4a2), 0 ≤ y ≤ 2a,
0, 2a ≤ y.

For general µ1 and µ2, the pdf is the same, but centred on µ1 + µ2 rather than
zero. Geometrically, this pdf takes the form indicated in Figure 5.2.

Example 10 The sum of n uniform distributions of the same semi-width

Suppose the model is
Y = X1 + · · ·+ Xn

and, for i = 1, . . . , n, Xi has a uniform pdf with mean µi and semi-width a (and
hence standard deviation a/

√
3). Then Y is a B-spline of order n (degree n−1)

with mean µ = µ1 + · · ·+ µn and standard deviation a
√

n/3.

Example 11 The sum of two uniform distributions of arbitrary semi-widths

Suppose the model is
Y = α1X1 + α2X2

and, for i = 1, 2, Xi has a uniform pdf with mean µi and semi-width ai (and
hence standard deviation ai/

√
3). Then Y has a symmetric trapezoidal pdf g(y)

with mean µ = α1µ1 + α2µ2, semi-width α1a1 + α2a2 and standard deviation
{(α2

1a
2
1+α2

2a
2
2)/3}1/2. Geometrically, this pdf takes the form indicated in Figure

5.3.

Analytical solutions in some other simple cases are available [26, 28].
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Figure 5.3: The probability density function for a general linear combination
Y = α1X1 + α2X2 of two uniform distributions X1 and X2. It is symmetric
about its midpoint.

5.1.2 Approximate analytical methods

Approximate analytical methods are approaches that fall part-way between the
analytical methods of Section 5.1 and the numerical methods of Section 5.3.
They are related to Mainstream GUM (Section 6), but take the analysis fur-
ther in order to provide approximate analytical expressions for the pdf of the
output quantity in cases where Gaussian or Student’s-t pdf’s obtained in the
conventional way would be invalid.

A treatment [28] of some calibration examples using approximate analytic
methods provides output pdf’s in the form of

1. A uniform output pdf in the calibration of a hand-held digital multimeter,

2. A symmetric trapezoidal pdf in the calibration of a vernier caliper,

3. A further trapezoidal pdf in the calibration of a temperature block calibra-
tor.

The first of these examples is used subsequently in this guide (Section 9.3)
in the context of the MCS approach to uncertainty evaluation and the results
compared with those of [28] and Mainstream GUM.

5.2 Mainstream GUM

The GUM makes the following statement about the pdf’s of the input quanti-
ties:2

[GUM Clause 4.1.6] Each input estimate xi and its associated un-
certainty u(xi) are obtained from a distribution of possible values
of the input quantity Xi. This probability distribution may be fre-
quency based, that is, based on a series of observations xi,k of Xi,
or it may be an a priori distribution. Type A evaluations of stan-
dard uncertainty components are founded on frequency distributions
while Type B evaluations are founded on a priori distributions. It
must be recognized that in both cases the distributions are models
that are used to represent the state of our knowledge.

2To this statement, the comment must be added that some pdf’s may be based on both
types of information, viz., prior knowledge and repeated observations. Evaluations of standard
uncertainty in this setting are not purely Type A or Type B. The GUM gives one such instance
(GUM Clause 4.3.8, Note 2.)
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The intent of Mainstream GUM is to derive the parameters of a Gaussian
or Student’s-t distribution that represents the output pdf g(y) given the pdf’s
of the inputs Xi to the model.

For Mainstream GUM, the following steps constitute the calculation phase,
Phase 2:

1. Obtain from the (joint) input pdf(s) the means x = (x1, . . . , xn)T and the
standard deviations u(x) = (u(x1), . . . , u(xn))T of the input quantities.

2. Form the covariances u(xi, xj) of the input quantities from the appropriate
joint pdf’s for any pair of correlated input quantities.

3. Form the partial derivatives of first order of the model with respect to the
input quantities. See Section 5.5.

4. Form numerically the (mean) measurement result by evaluating the model
at the estimates of the input quantities (the means of the input pdf’s).

5. Form the model sensitivities as the values of the partial derivatives eval-
uated at these means. See Section 5.5.

6. Determine the combined standard uncertainty, viz., the standard devia-
tion of the model output quantity, by combining the values of the input
standard uncertainties, the input covariances and the model sensitivities
(GUM Formula (13)). See Section 6.2.1.

7. Calculate ν, the effective number of degrees of freedom of the output quan-
tity, using the Welch-Satterthwaite formula (GUM Equation (G.2b)).3

8. Compute the expanded uncertainty, and hence an interval having a stip-
ulated coverage probability containing the measurand, by forming the
appropriate multiple of the combined standard uncertainty under the
assumption that the output is a Gaussian distribution (ν = ∞) or a
Student’s-t distribution (ν < ∞).

A review of the Mainstream GUM procedure is given in Section 5.4. Details,
procedures and examples are given in Chapter 6.

5.3 Numerical methods

It would rarely be a practical proposition to use the integral expression (3.1) in
Section 3.1 as the basis for the numerical determination of g(y), the pdf of the
output quantity. A multivariate quadrature rule4 would need to be devised that
was capable of delivering g(y) to a prescribed numerical accuracy for each choice
of y. Further, the quadrature rule would have to be applied at a sufficiently fine
set of y-values to provide g(y) adequately.

3Mainstream GUM does not state how ν is to be calculated when the input quantities are
correlated.

4A quadrature rule is a numerical integration procedure. Examples in the univariate case
are the trapezoidal rule and Simpson’s rule.
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5.3.1 Monte Carlo Simulation

Rather than attempting to evaluate the integral (3.1), Monte Carlo Simulation
(MCS) [4, 19, 21, 23, 54, 64] encompasses an entirely different approach, based
on the following considerations. The expected value of the output quantity Y
is conventionally obtained by evaluating the model for the estimated (mean)
values x1, . . . , xn of the input quantities to give the value y. However, since
each input quantity is described by a pdf rather than a single number, a value
as legitimate as its mean can be obtained by drawing a value at random from
this function.

MCS operates in the following manner,5 based on this consideration. Gen-
erate a value at random from the pdf for each input quantity and form the
corresponding value of the output, by evaluating the model for these values as
input quantities. Repeat this process many times, to obtain in all M , say, es-
timates of the output quantity. According to the Central Limit Theorem [51,
p169], the mean value y of the estimates of the output quantity obtained in
this manner converges as 1/M1/2, if the standard deviation u(y) of y exists.
Irrespective of the dimensionality of the problem, i.e., the number n of input
quantities, it is (only) necessary to quadruple M in order to halve the expected
uncertainty in the estimate of u(y). Standard numerical quadrature would re-
quire a factor of 2N/2 for this purpose. Thus, the basic concept of MCS has
reasonable convergence properties. It is straightforward to implement for simple
or even moderately complicated problems. Its general implementation requires
effort: see Section 7.7. A broad introduction to MCS is available [38], as is a
discussion on uncertainty propagation in Monte Carlo calculations [57].

Details, procedures and examples are given in Chapter 7.

5.4 Discussion of approaches

The approach used for any particular problem needs to be chosen with care. As
indicated, Mainstream GUM is the “method of choice” for many organizations.
Analytical methods are in a sense ideal when applicable. Numerical methods
offer flexibility. MCS is increasingly used by laboratories and industrial organi-
zations. A more detailed comparison of the three approaches will be prepared
as part of the SSf M programme (Section 1.1) and given in a future edition of
this guide. Here, selected comments are made.

5.4.1 Conditions for Mainstream GUM

Mainstream GUM requires

1. The linearization of the model to be sufficiently accurate.6

2. The applicability of the Central Limit Theorem (GUM Clause G.2.1),
implying the representativeness of g(y), the pdf of the output quantity,

5This description applies to a model with a single output quantity. For a multivariate
problem, additional considerations apply (Section 7.4).

6If the linearization of the model is not sufficiently accurate, the quality of the evaluated
uncertainty is affected, as is the estimate of the measurand. The latter point may be less well
appreciated in some quarters. The bias so introduced into the estimate of the measurand is
illustrated in Section 9.5, for example.
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by a Gaussian or Student’s-t distribution with known mean and standard
deviation and, in the latter case, a known number ν of degrees of freedom.

3. The adequacy of the Welch-Satterthwaite formula (cf. GUM Clause G.6.6,
[37]).7

4. The input quantities to be uncorrelated if ν is finite.

5.4.2 When the conditions do or may not hold

In practice, Mainstream GUM is sometimes used in violation of the conditions
listed in Section 5.4.1, and the results thus produced can only be regarded as ap-
proximate (with an unquantified degree of approximation). Or, more frequently,
it is used without knowing whether these conditions hold (again with an un-
quantified degree of approximation). As indicated in Section 7, a basic form
of MCS is readily implemented, requiring only model evaluation and simple
random-number generation.8 Because control can be exercised over the number
of figures delivered (see Section 7.7.1), MCS can also be used to validate (i)
the results provided by Mainstream GUM, and (ii) software implementations
of Mainstream GUM. Although many evaluations based on Mainstream GUM
may be sound, it is important to demonstrate that this is so. If (a legitimate
implementation of) MCS indicated that certain Mainstream GUM results were
invalid, it is recommended that consideration be given to using MCS instead.

5.4.3 Probability density functions or not?

The application of Mainstream GUM might not appear to require the specifica-
tion of the input pdf’s per se. It operates in terms of the means and standard
deviations of these pdf’s (Chapter 6). Mainstream GUM therefore has the ap-
parent advantage that it is not necessary to provide the pdf’s of the model
inputs, i.e., just means and standard deviations would “suffice”.

The Type A evaluations of the inputs are obtained by analyzing “repeated
observations”, from which means and standard deviations (but not pdf’s) are
obtained.

Conversely, for Type B evaluations, the means and standard deviations are
determined from known or assigned input pdf’s (Section 4.3). These pdf’s are
then used no further.

Thus, for some of the input quantities, the pdf’s are not required and for
the others they are not used. This attitude is seen as being incompatible with
the Bayesian view that is increasingly used as a consistent basis for uncertainty
evaluation. With a Bayesian approach, a pdf would be assigned to each input,
based on whatever information, however meagre, is available.

As indicated in Section 6, the GUM in fact states (in Clause 4.1.6) that
each input estimate and its associated standard uncertainty are obtained from
a distribution of possible values of the input quantity Xi. Thus, a distribution is
at least implied, although many practitioners would not obtain or even postulate

7The Welch-Satterthwaite formula is an approximation and assumes that the input mean
values are independent and that the input standard deviations are independent.

8Implementations made by the authors have been applied to explicit and implicit models
(where Y can and cannot be expressed directly in terms of X), and complex-valued models
(for electrical metrology), with univariate and multivariate outputs.
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it, simply computing, for a Type A evaluation of uncertainty, an estimate and a
standard deviation from the repeat observations to be used in the Mainstream
GUM approach.

This guide encourages the assignment of a pdf to each input quantity. By
so doing any of the candidate solution approaches considered in Section 5 can
be applied. They can also be contrasted, if required. The assignment of these
pdf’s is addressed in Section 4.3.

5.5 Obtaining sensitivity coefficients

The sensitivity coefficients are the values of the partial derivatives of first or-
der with respect to the input quantities, evaluated at the estimates of the in-
put quantities. Their determination can present an algebraically difficult task.
There are two stages:

1. Form algebraically the n first-order partial derivatives,9

2. Evaluate these derivatives at the estimates of the input quantities.

These stages constitute Steps 3 and 5, respectively, of the Mainstream GUM
procedure (as outlined in Section 5.2) for the calculation phase, Phase 2, of the
uncertainty evaluation problem.

If the effort of determining these derivatives manually is considerable, there
are two alternative approaches:

• Finite-difference methods,

• Computer-assisted algebraic methods.

Advice on the use of finite-difference methods is given in Section 5.5.1 and some
comments on computer-assisted algebraic methods in Appendix C.

In the context of Phase 2, calculation, of the uncertainty evaluation problem
there is no essential concept of sensitivity coefficients. They are of course re-
quired by the Mainstream GUM approach (Section 5.2). Independently of the
approach used, they also convey valuable quantitative information about the
influences of the various input quantities on the measurand (at least in cases
where model linearization is justified). If an approach is used that does not
require these coefficients for its operation, they can of course additionally be
calculated if needed. Within the context of the Monte Carlo Simulation ap-
proach, it is also possible to apply the concept of sensitivity coefficients. Some
comments are given in Appendix E.

5.5.1 Finite-difference methods

Numerical approximations to the values of derivatives can be obtained using
finite-differences techniques. Given a value i (1 ≤ i ≤ n), set all X` = x`, apart
from Xi, i.e., assign the estimated values of the inputs to the input quantities,
apart from the ith. Denote the resulting function of Xi by fi(Xi).

9Expert advice may be required if the model is not continuously differentiable with respect
to some or all of the input quantities.
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A typical finite difference approximation to ∂Y/∂Xi evaluated at x is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + hi)− fi(xi)
hi

,

where hi is a “suitably small” increment in xi (see below). Note that fi(xi) ≡
f(x) will already have been formed in evaluating the model at the estimates x
of the input quantities.

The approximation can be perceived as follows. Consider the graph of
fi(Xi). The formula gives the gradient of the chord joining the points (xi, fi(xi))
and (xi + hi, fi(xi + hi)). This gradient approximates the gradient of the tan-
gent at (xi, fi(xi)) to the graph of the function, which is of course the required
derivative.

The choice of hi is important. If it is too great, the formula gives a large ap-
proximation error, i.e., the tangent and the chord point in appreciably different
directions. If it is too small, the formula gives a large subtractive cancellation
error, since the values of fi(xi) and fi(xi + hi) will have many common leading
figures.

A generally more accurate form, requiring an additional function evaluation,
is

∂Y

∂Xi

∣∣∣∣
X=x

≈ fi(xi + hi)− fi(xi − hi)
2hi

.

For a given value of hi, the magnitude of the approximation error is generally
reduced using this form. Thus the value of hi can be larger, affording a better
balance between approximation and cancellation errors.

The GUM, in Clause 5.1.3, suggests the use of the second formula with
hi = u(xi). This choice can generally be expected to be acceptable, although
there may be exceptional circumstances.
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Chapter 6

Mainstream GUM

6.1 Introduction to model classification

In the GUM [1] a measurement system is modelled by a functional relationship
between the input quantities X = (X1, . . . , Xn)T and the measurand Y (the
output quantity) in the form

Y = f(X). (6.1)

In practice, however, this functional relationship does not apply directly for
many of the measurement systems encountered, but may instead (a) take the
form of an implicit relationship, h(Y,X) = 0, (b) involve a number of measur-
ands Y = (Y1, . . . , Ym)T, or (c) involve complex-valued quantities. Although
measurement models other than (6.1) are not directly considered in the GUM,
the same underlying principles may be used to propagate uncertainties from the
input quantities to the output quantities.

In Section 6.2 a classification of measurement models is given that is more
general than that considered in the GUM. This classification is motivated by ac-
tual measurement systems, examples of which are given. For each measurement
model it is indicated how the uncertainty of the measurement result is evaluated.
Mathematical expressions for the uncertainty are stated using matrix-vector
notation, rather than the subscripted summations given in the GUM, because
generally such expressions are more compact and more naturally implemented
within modern software packages and computer languages.

The Mainstream GUM approach is used throughout this chapter. Any doubt
cocerning its applicability should be addressed as appropriate, for instance by
using the concepts of Chapter 8.

6.2 Measurement models

A classification of measurement models is presented that depends on whether

1. There is one or more measurand, i.e., Y is a scalar or a vector,

2. The measurand Y is obtained by evaluating a formula or by solving an
equation, or
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3. The input quantities X are real- or complex-valued or the model function
f is real- or complex-valued or both X and f are real- or complex-valued.1

The following information is assumed to be available:

1. Estimates x = (x1, . . . , xn)T of the input quantities X.

2. For i = 1, . . . , n, either

(a) The standard uncertainty u(xi), for uncorrelated input quantities, or

(b) For j = 1, . . . , n, the covariance u(xi, xj) of xi and xj , for correlated
input quantities.2 Note that u(xi, xi) = u2(xi), the variance of xi.

The following eight sub-sections provide matrix expressions for the uncertainty
u(y), in the form of the variance u2(y), of y in the scalar case, or the covariance
matrix Vy containing the covariances u(yi, yj) in the vector case. Derivation of
the formulae and equations is not given here. It is straightforward using basic
statistical concepts and matrix manipulation.

The concentration is on providing information on the various types of model
that appear in practice, and for each of these types giving relevant advice.
The guidance is especially relevant when software is to be used to help provide
uncertainty evaluations.3

For the first two model types (univariate, explicit, real-valued and multivari-
ate, explicit, real-valued), the detail of the manner in which the matrices used
are formed is provided through an example. The remaining model types are
treated analogously.

6.2.1 Univariate, explicit, real-valued model

In a univariate, explicit, real-valued model, a single real-valued measurand Y is
related to a number of real-valued input quantities X = (X1, . . . , Xn)T by an
explicit functional relationship f in the form of (4.2). This is the model directly
considered in the GUM.

The measurement result is y = f(x).
The (combined) standard uncertainty u(y) of y is evaluated from

u2(y) =
n∑

i=1

n∑
j=1

∂f

∂xi

∂f

∂xj
u(xi, xj), (6.2)

where the partial derivatives4 ∂f/∂xi are referred to as sensitivity coefficients.
Write these covariances within the n× n matrix

Vx =

 u(x1, x1) . . . u(x1, xn)
...

...
...

u(xn, x1) . . . u(xn, xn)

 (6.3)

1If X or f is complex-valued, the measurand Y will in general also be complex-valued.
2Some or many of these covariance values may be zero.
3A supplemental guide to the GUM, based in part on the approach in this chapter, is being

developed by JCGM/WG1.
4In accordance with the GUM, the informal notation that ∂f/∂xi denotes the partial

derivative ∂f/∂Xi evaluated at x = (x1, . . . , xn)T is used. If derivatives are evaluated at any
other point, a specific indication will be given.
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and the sensitivity coefficients as the 1× n (row) vector

∇xf = (∂f/∂x1 . . . ∂f/∂xn). (6.4)

Then, a compact way of writing (6.2), that avoids the use of doubly-scripted
summations, is

u2(y) = (∇xf)Vx(∇xf)T, (6.5)

where Vx is a matrix of order n containing the covariance terms.

Example 12 End-gauge calibration

[GUM Example H.1 End-gauge calibration] The length of a nominally 50 mm
gauge block is determined by comparing it with a known gauge block standard of
the same nominal length. An expression for the direct output of the comparison
of the two gauge blocks is the difference

D = {1 + (AS + δA)Θ}L− {1 + AS(Θ− δΘ)}LS (6.6)

in their lengths, where5

• L is the measurand, viz., the length at 20 ◦C of the gauge block being
calibrated,

• LS is the length of the standard at 20 ◦C as given in its calibration cer-
tificate,

• AS is the coefficient of thermal expansion of the gauge block standard,

• δA = A−As, where A is the coefficient of thermal expansion of the gauge
block being calibrated,

• Θ is the deviation in temperature from the 20 ◦C reference temperature
of the gauge block being calibrated,

• δΘ = Θ − ΘS, where ΘS is the deviation in temperature from the 20 ◦C
reference temperature of the gauge block standard,

From (6.6) the measurand L can immediately be expressed in terms of the
quantities D, LS, AS, δA, Θ and δΘ as the model

L =
{1 + AS(Θ− δΘ)}LS + D

1 + (AS + δA)Θ
.

In terms of the general formulation above, the input quantities are

X ≡ (D,LS, AS, δA,Θ, δΘ)T

and the output quantity is
Y ≡ L.

The estimates of the input quantities are denoted by

x ≡ (d, `S, αS, δα, θ, δθ)T. (6.7)
5This choice of input variables is made for consistency with GUM, Example H.1. Other

choices are possible. See later in this example.
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The estimate
y ≡ `

of the measurand L is

` =
{1 + αS(θ − δθ)} `S + d

1 + (αS + δα)θ
.

The partial derivatives of the model with respect to the input quantities are

∂L

∂D
=

1
1 + (AS + δA)Θ

,

∂L

∂LS
=

1 + AS(Θ− δΘ)
1 + (AS + δA)Θ

,

∂L

∂AS
=

(Θ2δA−ΘδΘδA− δΘ)LS −Dθ

{1 + (AS + δA)Θ}2
,

∂L

∂(δA)
= − [{1 + AS(Θ− δΘ)}LS + D] Θ

{1 + (AS + δA)Θ}2
,

∂L

∂Θ
=

(AS + δA)(LSASδΘ−D)− LSδA

{1 + (AS + δA)Θ}2
,

∂L

∂(δΘ)
=

−ASLS

1 + (AS + δA)Θ
.

The substitution (d for D, `S for LS, etc.) of the numerical values of the
estimates (6.7) into these expressions for the partial derivatives yields the values
of the sensivity coefficients.

The set of six sensitivity coefficients, arranged as a row vector, constitutes
the row vector ∇xf in (6.5). The variances given by the squares of the standard
uncertainties of the six input quantities constitute the diagonal elements of the
covariance matrix Vx in (6.5). The remaining elements of Vx are taken as zero,
since the input quantities are regarded as uncorrelated (GUM, Example H.1).
Thus, u2(y) and hence u(y) can be formed from (6.5).

6.2.2 Multivariate, explicit, real-valued model

Although not directly considered in the body of the GUM, instances of mea-
surement systems are included in that guide for which there is more than one
measurand. This form of model occurs widely in metrological practice, viz., in
calibration, instrument design and experimental data analysis.

Formally, the model for a multivariate, explicit, real-valued measurement
system takes the form

Y = f(X), (6.8)

where Y = (Y1, . . . , Ym)T is a vector of m measurands.
The measurement result is y = f(x).
The uncertainty of y is expressed using a covariance matrix Vy that contains

the covariances u(yi, yj), and is evaluated by matrix multiplication from

Vy = JxVxJT
x , (6.9)
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where Jx is the m×n (Jacobian) matrix containing the values of the derivatives
∂fi/∂xj , for i = 1, . . . , n, j = 1, . . . ,m.

Example 13 Resistance and reactance of a circuit element

The resistance R and reactance T of a circuit element are determined (GUM,
Clause H.2) by measuring the amplitude U of a sinusoidal alternating poten-
tial difference applied to it, the amplitude I of the alternating current passed
through it, and the phase shift angle φ between the two from

R =
U

I
cos φ, T =

U

I
sinφ.

In terms of the above notation, X ≡ (U, I, φ)T and Y ≡ (R, T )T.
The matrix Jx, of dimension 2× 3, is

Jx =

[
∂R
∂U

∂R
∂I

∂R
∂φ

∂T
∂U

∂T
∂I

∂T
∂φ

]
=

[
1
I cos φ − U

I2 cosφ −U
I sinφ

1
I sinφ − U

I2 cos φ U
I cos φ

]
.

The substitution of estimates (u of U , etc.) into the expression for Jx will
yield this matrix, and, given the covariance matrix Vx of order 3 of the input
quantities (cf. Section 6.2.1), the covariance matrix Vy, of order 2 of the output
quantities is given by matrix multiplication using (6.9).

6.2.3 Univariate, implicit, real-valued model

In a univariate, implicit, real-valued model, a single real-valued measurand Y is
related to real-valued input quantities X in a way that cannot readily or stably
be represented by an explicit function. A model for the measurement system
takes the form of an equation relating X and Y :

h(Y, X) = 0. (6.10)

The measurement result y is given by the solution of the equation h(y, x) = 0.
This equation is solved numerically for y using a zero-finding algorithm [25, 34],
such as the bisection algorithm in a case where suitable lower and upper bounds
for y are known. The standard uncertainty u(y) of y is evaluated from

u2(y)
(

∂h

∂y

)2

= (∇xh)Vx(∇xh)T, (6.11)

where ∇xh is the row vector of sensitivity coefficients of h with respect to X,
evaluated at x (cf. (6.4)).

Example 14 The pressure generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the
equation6

p =
M(1− ρa/ρm)g`

A0(1 + λp)(1 + α(T − 20))
, (6.12)

6More complete models can also be considered [47] that include, for example, a correction
to account for surface tension effects.
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where M is the total applied mass, ρa and ρm are the densities of air and the
applied masses, g` is the local acceleration due to gravity, A0 is the effective
cross-sectional area of the balance at zero pressure, λ is the distortion coeffi-
cient of the piston-cylinder assembly, α is the temperature coefficient, and T is
temperature [47].

There are eight input quantities, X ≡ (A0, λ, α, T,M, ρa, ρm, g`)T and a
single measurand Y ≡ p related by the implicit model7

h(y, x) = A0p(1 + λp)(1 + α(T − 20))−M(1− ρa/ρm)g` = 0. (6.13)

Given estimates x of X, Equation (6.13) is solved for y ≡ p. The first-order
partial derivatives of h, in (6.13), with respect to X, evaluated at x, provide the
elements of the row vector ∇xh in (6.11). Together with the covariance matrix
Vx of the estimates x and the partial derivative ∂h/∂y ≡ ∂h/∂p, evaluated at
x, this information permits u(y) ≡ u(p) to be formed using (6.11).

6.2.4 Multivariate, implicit, real-valued model

A multivariate, implicit, real-valued model is identical to (6.10), but Y is now
a vector, in the form of a vector measurand Y:

h(Y, X) = 0. (6.14)

The measurement result y is given by the solution of the equation h(y; x) = 0.
These equations are solved numerically for y using an iterative algorithm such
as Newton’s method [34], starting from a specified point y(0). The covariance
matrix Vy for y is related to that, Vx, for x by

JyVyJT
y = JxVxJT

x , (6.15)

a system of linear equations that is solved for Vy.8

7There is not a unique way to write the implicit model. For instance, in place of (6.13) the
model given by the difference between the left- and right-hand sides of (6.12) could be used.
The efficiency and stability of the solution of the model equation depends on the choice made.

8Using recognised concepts from numerical linear algebra [35], a numerically stable way to
form Vy, that accounts for the fact that Jx is a rectangular matrix and Jy a square matrix,
is as follows:

1. Form the Cholesky factor Rx of Vx, i.e., the upper triangular matrix such that RT
x Rx =

Vx.

2. Factorize Jx as the product Jx = QxUx, where Qx is an orthogonal matrix and Ux is
upper triangular.

3. Factorize Jy as the product Jy = LyUy, where Ly is lower triangular and Uy is upper
triangular.

4. Solve the matrix equation UT
y M1 = I for M1.

5. Solve LT
yM2 = M1 for M2,

6. Form M3 = QT
xM2.

7. Form M4 = UT
x M3.

8. Form M = RxM4.

9. Orthogonally triangularize M to give the upper triangular matrix R.

10. Form Vy = RTR.

It is straightforward to verify this procedure using elementary matrix algebra.
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Example 15 Correlated pressures generated by a pressure balance

In the example of Section 6.2.3, let pi, i = 1, . . . ,m, denote the generated
pressures for applied masses Mi and temperatures Ti, with A0, λ, α, ρa, ρm

and g` fixed. Each pi is obtained by solving an equation of the form (6.13).
However, the resulting values are not independent because they all depend on
the measured quantities A0, λ, α, ρa, ρm and g`. To understand the correlation
between the pi, it is necessary to model the system using a multivariate implicit
function in which X ≡ (A0, λ, α, T1,M1, . . . , Tm,Mm, ρa, ρm, g`)T is the vector
of input quantities and Y ≡ (p1, . . . , pm)T the vector of measurands.

6.2.5 Univariate, explicit, complex-valued model

Let x be a complex-valued quantity written in terms of its real and imaginary
parts:

x = xR +
√
−1xI .

The uncertainty of x is expressed using a 2× 2 matrix

V =
[

u2(xR) u(xR, xI)
u(xR, xI) u2(xI)

]
.

This is a more complicated data structure than for the case of real-valued x.9

For an n-vector x of complex-valued quantities, the uncertainty of x is expressed
using a 2n× 2n matrix Vx:

Vx =

 V1,1 · · · V1,n

...
. . .

...
Vn,1 · · · Vn,n

 , (6.16)

where Vi,i is a 2×2 sub-matrix containing the uncertainty of xi, and Vi,j , i 6= j,
is a 2× 2 sub-matrix of Vx containing the covariances of the real and imaginary
parts of xi with those of xj .

In a univariate, explicit, complex-valued model, a single complex-valued
measurand Y is related to a number of complex-valued input quantities X by
an explicit functional relationship in the form of (6.1). The uncertainty Vy of
the measurement result y is evaluated from

Vy = JxVxJT
x , (6.17)

where Jx is a 2× 2n matrix whose first row contains the derivatives of the real
part of f with respect to the real and imaginary parts of X, and in whose second
row are the derivatives of the imaginary part of f .

Example 16 The reflection coefficient measured by a calibrated microwave re-
flectometer

9The data structure is, however, like that for the vector X = (XR, XI)T.
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The (complex-valued) reflection coefficient Γ measured by a calibrated mi-
crowave reflectometer, such as an automatic network analyser (ANA), is given
by

Γ =
aW + b

cW + 1
, (6.18)

where W is the observed (complex-valued) uncorrected reflection coefficient and
a, b and c are (complex-valued) calibration coefficients characterizing the reflec-
tometer [31, 45, 60].

6.2.6 Multivariate, explicit, complex-valued model

In a multivariate, explicit, complex-valued model the measurement system model
(6.8) applies with X and Y complex-valued. The uncertainty of y is given by
the 2n× 2m matrix Vy (see (6.16)) evaluated from

Vy = JxVxJT
x ,

where Jx is a 2m× 2m matrix containing the derivatives of the real and imagi-
nary parts of each component of f with respect to the real and imaginary parts
of each component of X.

Example 17 A calibrated microwave reflectometer used to measure correlated
reflection coefficients

Let a, b and c be the calibration coefficients for an ANA as in the example of
Section 6.2.5. Suppose Wi, i = 1, . . . ,m, are m observed uncorrected reflection
coefficients for which the corresponding “true” reflection coefficients are Γi,
i = 1, . . . ,m. The values Γi are obtained by evaluating m formulae of the form
of (6.18). However, the measurement results Γi are not independent because
they all depend on the calibration coefficients. To understand the correlation
between the Γi, it is necessary to model the system using a multivariate explicit
function in which the vector of input quantities X ≡ (a, b, c, W1, . . . ,Wm)T and
the vector measurand Y ≡ (Γ1, . . . ,Γm)T.

6.2.7 Univariate, implicit, complex-valued model

In a univariate, implicit, complex-valued model, the measurement model (6.10)
applies with Y and X complex-valued. The uncertainty of y is evaluated from

JyVyJT
y = JxVxJT

x ,

where Jy is a 2× 2 matrix containing the derivatives of the real and imaginary
parts of h with respect to the real and imaginary parts of y. Compare with
Section 6.2.4

Example 18 The reflection coefficient measured by a calibrated microwave re-
flectometer
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Another approach to the example given in Section 6.2.5 is to relate the inputs
X ≡ (a, b, c, W )T and the measurand Y ≡ Γ using the (complex-valued) implicit
model

h(Y,X) = Γ(cW + 1)− (aW + b) = 0.

An advantage of this approach is that the calculation of derivatives and thence
sensitivity coefficients is easier.

6.2.8 Multivariate, implicit, complex-valued model

In a multivariate, implicit, complex-valued model, the measurement system
model (6.14) applies with X and Y complex-valued. The uncertainty of y
is then evaluated from (6.15) which constitutes a linear system for Vy.

Example 19 Calibration of a microwave reflectometer using three standards

The calibration of a reflectometer is undertaken by measuring values W cor-
responding to a number of standards Γ. Typically, three standards are used,
giving the three simultaneous equations

Γi(cWi + 1)− (aWi + b) = 0, i = 1, 2, 3,

that are solved for the three calibration coefficients a, b and c. There are
six (complex-valued) input quantities X ≡ (W1,Γ1,W2,Γ2,W3,Γ3)T and three
(complex-valued) measurands Y ≡ (a, b, c)T related by a model of the form
(6.14), where

hi(y,x) = Γi(cWi + 1)− (aWi + b) = 0, i = 1, 2, 3.

6.3 Classification summary

The above classification of measurement system models is more general than
that considered in Mainstream GUM. The classification is motivated by actual
measurement systems for which the guidance provided in the GUM is applicable
but not immediately so.
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Chapter 7

Monte Carlo Simulation

The manner in which a general numerical approach, Monte Carlo Simulation
(MCS), can be applied to uncertainty evaluation is described. Practical imple-
mentation considerations are given.1

In the context of uncertainty evaluation, MCS is a sampling technique that
provides an alternative approach to the propagation of uncertainties: the pro-
cess is undertaken numerically rather than analytically. The technique is also
useful for validating the results returned by the application of Mainstream GUM
(Section 6), as well as in circumstances where the assumptions made by Main-
stream GUM may not apply. In fact, it provides much richer information, by
propagating the pdf’s (rather than just the uncertainties) of the input quantities
X through the measurement model f to provide the pdf of the measurand Y
or the joint pdf’s of multivariate measurands Y. From the pdf of the output
quantity coverage intervals (in the univariate case) can then straightforwardly
be produced, as can other statistical information.2

MCS enables account to be taken of the knowledge of analytically or ex-
perimentally specified input pdf’s, including asymmetric densities such as Pois-
son (counting rates) and Gamma (special cases of which are exponential and
chi-squared). The pdf’s for the input quantities form the necessary basis for
determining the pdf of an output quantity by MCS. (A calculated mean and
standard deviation, as provided by Mainstream GUM, do not alone form such
a basis.)

Experimentally specified pdf’s arise especially as the output from a previous
application of MCS in a process having several stages, where the outputs from
one stage becomes input to the next (Section 4.2.3). Re-sampling from these
results is equivalent to the use of bootstrapping, in which no prior pdf of a
quantity is assumed and the posterior distribution is constructed by assigning
the probability 1/M to each of M observed values of the quantity and zero
probability to all other values. This approach is consistent with the use of an
empirical output pdf, generated by MCS, to estimate the distribution function
and hence coverage intervals.

If the model inputs have correlated errors, sampling would take place from

1A supplemental guide to the GUM, related to the approach in this chapter, is being
developed by JCGM/WG1.

2The determination of coverage regions (for the multivariate case) remains a research prob-
lem. See Section 7.4.
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the corresponding joint pdf’s. A general approach to such sampling is available
[64].

MCS is a step-by-step procedure, like Mainstream GUM. The difference
is that in MCS a small number of steps is repeated very many times, and
the results obtained aggregated. Hence, computer implementation is essential.
Increasing use of software is being made in applying Mainstream GUM, so the
use of software for MCS is seen as a practical and acceptable (and more general)
alternative. Specifications for key software units are available [20].

The technique used is that of repeated sampling from the pdf’s describing
the input quantities. The fact that the sampling is carried out from the provided
pdf’s rather than being based on approximations the quality of which is difficult
to quantify is seen as highly relevant in removing the influence of uncontrollable
limitations.

So, given the model and the pdf’s of its input quantities, Monte Carlo Sim-
ulation constitutes a tool to estimate the pdf of the scalar output quantity Y
or vector output quantity Y.

The output pdf is fundamental to determining any or all statistics associated
with the measurement result.3 From it can be obtained:

• Mean4, median, mode and other estimates of location such as the total
median [24],

• Standard deviation (standard uncertainty) and its square, the variance,
and higher moments such as skewness and kurtosis,5

• A coverage interval at some stated level of probability (the generalization
of “measurement result ± expanded uncertainty” in the case of a Gaussian
output),

3Recall that the output quantity may become the input quantity to a subsequent stage
in a multi-stage model (Section 4.2.3), and hence in these circumstances MCS provides valu-
able problem-specific information that would not necessarily be provided by more traditional
approaches to uncertainty evaluation.

4There is currently a debate in the metrology community concerning whether this value or
the value of the model corresponding to the estimates of the input quantities should be used.
In many instances it will make neglible practical difference. In some cases, the difference can
be appreciable. Consider the simple model Y = X2

1 , where the pdf assigned to X1 has mean
zero and standard uncertainty u. Taking the mean of values of Y involves averaging a set
of non-negative values and hence will be positive. In contrast, the value of Y corresponding
to the mean value of X is zero. In this case, the former value is more reasonable, since zero
lies at an extremity of the range of possible values for the output quantity and is hardly
representative, as a mean should be. In other, somewhat more complicated situations, the
mean of the values of the output quantity constitutes a measurement result that contains
unwanted bias. In this circumstance, it can be more meaningful to take instead the value of
Y corresponding to the mean value of X. In general, circumstances should dictate the choice.
In one sense the degree of arbitrariness is genuine. The Monte Carlo procedure naturally
provides fractiles of the distribution function of the output quantity. In particular the 0.025
and 0.975 fractiles define a 95% coverage interval for the measurand. Such a coverage interval
is also given by any other pair of fractiles that differ by 0.95, such as 0.015 and 0.965, or
0.040 and 0.990. In this setting, it is less meaningful to quote a coverage interval in the form
y ± U(y), involving the “mean” y. For comparison with a “Monte Carlo” interval, it would
instead be appropriate to quote the interval [y − U(y), y + U(y)].

5The first moment of a pdf is the mean, a measure of location, the second is the variance, a
measure of dispersion or spread about the mean, the third is skewness, a measure of asymmetry
about the mean, and the fourth is kurtosis, a measure of heaviness of the tails of the pdf or
the peakedness in the centre. [51, p143, p329]
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• Any other statistical estimator or derived statistical quantity.

For multivariate output quantities, there would be higher-dimensional counter-
parts of these quantities.

The use of MCS is in principle straightforward, but a solid implementation
requires (a) generators (algorithms) to sample from all (joint) input pdf’s likely
to be useful in practice (some of which will be multidimensional because of
correlations) and (b) consideration of the number of Monte Carlo trials needed
to deliver two (say) correct figures in the output uncertainty. Work is needed
on (a) to cater for the variety of possible input pdf’s. As indicated, a general
approach to such sampling is available [64]. This and other approaches need to
be reviewed carefully for their suitability in the current context. For some of
the commonest pdf’s (univariate uniform, univariate Gaussian and multivariate
Gaussian), generators to carry out the sampling are available (Section 7.7). For
(b), see Section 7.7.1. The software specifications [20] are relevant here.

The MCS sampling technique is also valuable for validating the results re-
turned by the application of Mainstream GUM, as well as in circumstances
where the assumptions made by Mainstream GUM do not apply (Section 8).
Further, the fact that MCS permits general pdf’s rather than just means and
uncertainties to be propagated through measurement-system models cannot be
underestimated. As indicated, all statistical information relating to the variabil-
ity of the results of measurements, including correlation effects, can be discerned
from these output distributions. The quality of this information will depend on
that of the model and the input quantities and, if those are considered ac-
ceptable, is only limited by the number of samples generated. In particular,
quantitative results relating to the “propagation of uncertainties” can be ob-
tained from the propagated pdf’s. In contrast, the converse is not true: the
propagation of uncertainties as, e.g., in Mainstream GUM, cannot be used to
derive the output pdf’s (unless it can be shown that it is acceptable to regard
them as Gaussian).

The Mainstream GUM approach to uncertainty evaluation is based on prop-
agating uncertainties in a first-order approximation to the model of the measure-
ment system. MCS sampling techniques [29, 30] provide an alternative approach
in which instead the statistical distributions are propagated. Although no such
approximation as above is made, e.g., the nonlinearity of the model is taken into
account, the sampling process introduces a sampling error that depends on the
number of samples chosen or available.

A major distinction is that with Mainstream GUM there is no control over
the extent of the approximation introduced by linearizing the model, or as-
suming the output distribution function is Gaussian, whereas with MCS the
sampling error can be influenced by the amount of sampling, the number of
Monte Carlo trials (Section 7.7.1).

7.1 Sampling the input quantities

This section is concerned with the manner in which the inputs to the model
can be sampled as part of the Monte Carlo Simulation process. There are two
main types of input: a pdf that is defined continuously and a pdf that is defined
discretely. Moreover, a pdf can be univariate (Section 7.1.1) or multivariate
(joint) (Section 7.1.2).
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7.1.1 Univariate probability density functions

Each independent input quantity has an associated pdf (GUM Clause G.1.4).
Consider first a pdf defined continuously, e.g., a uniform, Gaussian or Student’s-
t pdf. Sampling from such a pdf is carried out using a (pseudo)random number
generator that is appropriate for that pdf. See Section 7.7.

Consider now an input quantity defined by a sufficiently large number of
repeated observations, and for which nothing further is known about the in-
put. In such a case the observations themselves can be used to represent their
distribution.

Consider such an input variable q specified by nq observations q1, . . . , qnq
.

Let q(1), . . . , q(nq) denote these values arranged in non-decreasing order. The
join Q(q) of the points (q(i), (i− 1/2)/nq), i = 1, . . . , nq, provides an estimate
of the distribution function (the indefinite integral of the pdf) of q.

Sampling from this function can be carried out using a uniform generator
and inverse linear interpolation. Specifically, a sample is given by

1. Using a generator to provide a value from the uniform pdf defined over
zero to one,

2. Using inverse linear interpolation to provide a value of q satisfying Q(q) =
z.

This procedure is not entirely satisfactory since for (1/nq)th of the time, on
average, a value returned by the uniform generator will lie beyond the join Q(q),
i.e., it will lie in a tail of the pdf, viz., z < 1/(2nq) or z > 1−1/(2nq). This failure
to sample from the tails of the pdf can be addressed by introducing an heuristic.
If z < 1/(2nq) or z > 1 − 1/(2nq), a new sample is drawn from the uniform
distribution (and re-drawn as many times as necessary). Alternatively, a value of
z < 1/(2nq) can be replaced by this limit, and similarly when z > 1− 1/(2nq),
a form of Winsorising. Both of these (and other such) approaches will bias
the solution, since no tail information (at least beyond the above limits) is
sampled. The latter is more appropriate than the former, however, because an
“unacceptable” value is replaced by the nearest “acceptable” value rather than
by a freshly sampled value. The use of parametric information, if available,
would help, but would be against the statement that only the data itself is
available.

Particularly for a large sample, however, the effect of tail information on
a consequent coverage interval is not appreciable. Large samples are therefore
strongly recommended.

Alternative, and more commonly, the bootstrap can be used. The boot-
strap simply draws a uniformly random observation from the set. A value is
“replaced” after being drawn, so that all observations maintain the same prob-
ability of being drawn.

7.1.2 Multivariate probability density functions

Sampling from a joint pdf that is defined continuously is largely a research
topic. Advice should be sought from a statistician or numerical analyst. A joint
(multivariate) Gaussian distribution can straightforwardly be handled [20].

Sampling from a joint pdf that is defined by a set of discrete values can be
carried out straightforwardly. Such values are likely to have been obtained from
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a previous application of MCS to a multivariate model (Section 7.4). Suppose
M Monte Carlo trials have previously be carried out and n is the number of
output quantities in that simulation. This information will have been preserved
as an n × M array of values. It embodies the full correlation effects present
in those outputs. A column chosen at random from the array will be a valid
sample with its correlation effects.

7.2 Univariate models

Consider first the univariate6 model function

Y = f(X),

where
X = (X1, . . . , Xn)T.

Let the probability density function (pdf) of the ith input quantity Xi be gi(Xi)
and the pdf of Y be g(Y ). Let

G(Y ) =
∫ Y

−∞
g(t)dt

denote the distribution function corresponding to g.
Adequate estimation of G(Y ) will permit all the required statistics associated

with Y to be determined.

7.3 A simple implementation of MCS for uni-
variate models

Advice on a simple implementation of MCS is given in the case of the univariate
model, above. Its use will permit for instance the estimation of the (combined)
standard uncertainty of the measurement result y, and a 95% coverage interval
for the measurand Y .

The number M of Monte Carlo trials is to be determined. In the experience
of the authors a value of the order of 50,000 is often appropriate. However,
guidance on taking a number of trials to provide a prescribed accuracy in the
estimated uncertainties is given in Section 7.7.1. It is recommended that such
guidance be applied rather than selecting a fixed number (e.g., 50,000) a priori,
even though such a number is often reasonable.7 Those organisations that have
a number of similar uncertainty calculations to make can reasonably infer a
value for M by noting the value for a representative problem, and using that.
The computational penalty for employing the adaptive procedure of Section
7.7.1 is so small, however, that it is recommended to use it.

The procedure is as follows.
6A univariate model function (Section 6.2.1, e.g.) has a single (scalar) output Y and an

arbitrary number n of inputs X = (X1, . . . , Xn)T. A multivariate model function (Section
6.2.3, e.g.) has an arbitrary numbers of inputs and outputs. The latter is considered in Section
7.4.

7The number of trials needed is a sensitive function of the level of probability required.
The “typical” figure of 50,000 applies to a 95% level of probability for a “moderate” problem.
Because of the need to quantify the tails of the output pdf sufficiently well, very many more
trials will be needed for a higher level such as 99%.
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1. Select a number M of Monte Carlo trials to be made.

2. Generate M samples xi of the input quantities X.

3. For each xi, evaluate the model to give the values

yi = f(xi), i = 1, . . . ,M,

of the output quantity.

4. Regard these values of yi when assembled into a histogram (with suitable
cell widths) as a (scaled) empirical estimate of the pdf of Y .8

5. Take the mean of these values of yi as the measurement result y.

6. Take the standard deviation of the yi as the (combined) standard uncer-
tainty u(y) of y.

7. Sort the values yi, i = 1, . . . ,M , into non-decreasing order. Denote the
sorted values by y(i), i = 1, . . . ,M .

8. Form the join of the points (y(i), pi), i = 1, . . . ,M , where pi = (i−1/2)/M .
It provides an empirical estimate of the distribution function of Y .

9. Form the 2.5-and 97.5-percentiles y(0.025M) and y(0.975M).

10. Take (y(0.025M), y(0.975M)) as a 95% coverage interval for the output.9

The procedure depends on the ability to sample from the pdf’s of the input
quantities. Section 7.7 provides advice on this aspect.

In the procedure, the number M of Monte Carlo trials is selected initially,
at Step 1. The variant, indicated above in this section, in which the number is
chosen adaptively, i.e., as the procedure is followed, is given in Section 7.7.1.

Example 20 The formation of the endpoints of a coverage interval from a
discrete estimate of a distribution function

For M = 50, 000, since 0.025M = 1, 250 and 0.975M = 48, 750, a 95% coverage
interval is taken as (y(1250), y(48750)), the values in positions 1250 and 48750 in
the ordered list of values y(1), . . . , y(50000).

Example 21 The use of Monte Carlo Simulation: estimation of the distribu-
tion function for a simple nonlinear model

8Most subsequent calculations will not be carried out in terms of this histogram, the
“shape” of which depends sensitively on the choice of cell size [33], but in terms of the distri-
bution function. The histogram is, however, a useful visual aid to understanding the nature
of the pdf.

9The 100p-percentile is the (Mp)th value in the list. If Mp is not an integer, the integer
immediately below Mp is taken, if p < 1/2, and the integer immediately above Mp, otherwise.
Similar considerations apply in other circumstances.
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Figure 7.1: An empirical estimate obtained using Monte Carlo Simulation, with
500 trials, of the distribution function for the model Y = X2

1 . X1 has a proba-
bility density function that is Gaussian with mean 1.2 and standard deviation
0.5.
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Figure 7.2: A histogram of the values used to produce the distribution function
of Figure 7.1. It constitutes a discrete, scaled representation of the correspond-
ing probability density function.

Consider the univariate model Y = X2
1 , where the single input X1 has a Gaus-

sian pdf with mean 1.2 and standard deviation 0.5. Determine the pdf and
distribution function of Y , the mean and standard deviation of Y and a 95%
coverage interval for the measurand.

First, the number M of Monte Carlo trials was taken as 500. Values xi,
i = 1, . . . ,M , were sampled from the Gaussian distribution having mean 1.2
and standard deviation 0.5. The corresponding values yi = x2

i , i = 1, . . . ,M ,
were calculated according to the model. The empirical distribution function of
Y was taken, in accordance with the above, as the join of the points (y(i), pi),
i = 1, . . . ,M , where pi = (i−1/2)/M . Figure 7.1 shows the distribution function
so obtained.

A histogram of the values of yi appears as Figure 7.2. It constitutes a
discrete, scaled representation of the pdf.

The empirical distribution function is a much smoother function than the
empirical pdf, the main reason for which is that the empirical distribution func-
tion constitutes a cumulative sum of the empirical pdf. Taking successive sums
is a smoothing process, being the converse of taking successive differences. This
summation corresponds to the integration counterpart for analytical pdf’s.

The exercise was repeated for M = 50, 000 trials. See Figures 7.3 and 7.4.
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Figure 7.3: As Figure 7.1 but based on 50,000 Monte Carlo trials.
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Figure 7.4: As Figure 7.2 but based on 50,000 Monte Carlo trials.

The enhanced smoothness of the results is evident. Statistics computed from the
larger sample would be much more reliable. It can be expected that increasing
the number of trials by a factor of 100, as here, would yield an additional
significant digit of accuracy in the computed statistics [19]. A rule for the
number of trials related to this consideration is given in Section 7.7.1.

The enhanced resolution permits a feature to be discerned in the pdf for
M = 50, 000 (Figure 7.4) that was not evident in that for M = 500. The
pdf is bimodal, there being a narrow peak near the origin, in addition to the
main peak. This is not an artifact introduced by the sampling procedure, but
a genuine effect. Its presence is due to the fact that 0.8% of the values of
X1 according to its pdf are negative. These values lie in the left-hand tail of
the Gaussian pdf for X1, i.e., that with mean µ = 1.2 and standard deviation
σ = 0.5. The above proportion corresponds to the area under the standardized
Gaussian curve (i.e., that with mean zero and standard deviation unity) to the
left of the value z = (0−µ)/σ = −2.4. These values when squared, through the
model Y = X2

1 , are aggregated with those arising from small positive values of
X1. Even for such a superficially innocent example, there can be a “surprise”
such as this!

The mean and standard deviation of the output as estimated by Mainstream
GUM are 1.44 and 1.20. Those provided by MCS were 1.70 and 1.26. The stan-
dard deviation in this example is reasonably estimated by Mainstream GUM,
but the mean is lower than the correct value.

A further noteworthy feature arises from this example. In the case M =
50, 000, a 95% coverage interval for Y , determined from the 2.5- and 97.5-
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percentiles of the empirical distribution function was [0.1, 4.8]. That provided
using Mainstream GUM is [−1.1, 3.9] or, equivalently, 1.4 ± 2.5. The lengths
of the coverage interval are similar. However, the interval provided by Main-
stream GUM is shifted left relative to that for MCS. In fact, the portion of the
Mainstream GUM coverage interval from -0.8 to zero is infeasible, since, from
its definition, Y cannot be negative.

Coverage intervals at other levels of probability were also obtained using
MCS and Mainstream GUM. Appreciable differences were again observed. For
instance, at a 99.8% level of probability (corresponding to a coverage factor of
3 under the Gaussian assumption), the coverage interval provided by MCS was
[0.0, 7.5] and that for Mainstream GUM is [−2.3, 5.2].

Although the above example might seem extreme, situations with large un-
certainties arise in metrology areas such as EMC measurement. Instances where
the quotient of the standard uncertainty and the mean are of order unity also
arise, e.g., in dimensional metrology and in photometry and radiometry. There
are also problems in limits of detection (Section 9.5), where the uncertainties
involved are comparable to the magnitudes of the quantities measured.

The effect of bias in the evaluated endpoints of the coverage interval con-
structed in this way, resulting from the use of a finite sample, can be reduced
using so-called bias-corrected methods [30].10

7.3.1 Computation time

An indication of the computation time required for Monte Carlo calculations
can be obtained from the following figures.

A problem with a model consisting of the sum of five terms, a cosine, a sine,
an inverse tangent, an exponential and a square root was synthesised. Each
term was assigned a Gaussian pdf. M = 106 Monte Carlo trials were made.
Computation time for a 1 GHz Pentium 3 PC using Matlab are as follows.

The generation of the 5M Gaussian pseudo-random numbers takes 1 s.
The evaluation of the M model values takes 1 s.
To sort the M estimates of the output into non-decreasing order to produce

the output distribution function takes 3 s.11

Thus, the computation time totals 5 s.
This information provides a simple basis for estimating the computation

time for other models, other values of M and other PCs.

7.4 Monte Carlo Simulation for multivariate mod-
els

Consider the counterpart of Section 7.2 for multivariate models. The model is
now

Y = f(X).

10In the authors’ experience these corrections typically have a small effect. This aspect,
however, merits further study.

11The sorting should be carried out using a sorting algorithm that takes a number of op-
erations proportional to M log M [55]. A naive sorting algorithm would take a number of
operations proportional to M2 that might make the computation time unacceptably long.
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M samples xi of the input quantities X are taken as before. For each xi,
evaluate the model as previously, except now the values of the output quantities
are yi = f(xi), m× 1 vectors.

Assemble these vector output quantities into an m×M matrix12:

Υ = (y1, . . . ,yM ).

From this matrix the covariance matrix Vy can be estimated. It is readily
verified that

Vy =
1

M − 1
Υ′(Υ′)T,

where Υ′ is Υ corrected for the sample means over all M trials, i.e., with the
mean of the jth row subtracted from all elements in that row, for j = 1, . . . ,M .

This covariance matrix contains (generally a more reliable estimate of) the
information that would be delivered by a linear analysis such as Mainstream
GUM. (In fact, it provides more than Mainstream GUM, since that procedure
does not in general cover multivariate models.) The matrix Υ provides much
richer information, however, in the following sense. Consider any function of
the output quantities, i.e., the “next” output quantities in a subsequent stage of
a multi-stage process for which the input quantities are those output quantities.
The function evaluated for any column of Υ is an instance of the next output
quantity. Since this output quantity can be calculated for all columns, the
resulting 1 × M row vector providing an empirical sampling distribution for
that quantity. In particular, percentiles of the values in that vector can be
used, as above, to provide a coverage interval for the derived quantity. Another
quantity could be so introduced and the two row vectors used to compute any
statistics required (mean, median, etc.) and the pair of vectors used to estimate
correlation effects. Thus, the matrix Υ is a very valuable array, being the basis
of almost unlimited statistical information.

The extension of the approach to the evaluation of coverage regions for
multivariate measurement results is not straightforward, because the operation
of sorting multivariate data is generally not well-defined. Some approaches have
been proposed [3], including the ranking of multivariate data using the metric

(yi − a)TΣ−1(yi − a), (7.1)

where a is a location statistic, such as the mean or (spatial) median [58], for the
set yi and Σ is a dispersion statistic, such as the covariance matrix Vy, for the
set.

The provision of coverage regions in general is currently a research topic.
A simple, practical approach is therefore proposed for current purposes. As
indicated in Section 3.1, even in the univariate case the coverage interval is not
unique. There is far greater freedom of choice in the multivariate case, where
any domain containing 95% of the distribution of possible values constitutes a
95% coverage region. Moreover, a coverage interval can be expressed in terms
of just two quantities, such as the interval endpoints or the interval midpoint
and the semi-width. In more than one dimension, there is an infinite number of
possibilities for the shape of the region.

12The symbol Υ is (reluctantly) used to denote the matrix of y-vectors, since Y is used to
denote a scalar output quantity and Y a vector output quantity.
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A working approach is as follows. For linear or linearized problems the co-
variance matrix of the (vector) output quantity defines a one-standard-deviation
ellipsoid [51] centred on the point denoting the estimate of the output quantity.
Ellipsoids concentric with this one contain various fractions of the distribution
of values attributed to the output quantity. For a given level of probability,
95%, say, the size of the ellipsoid from this set can be found (using the theory
of multidimensional Gaussian distributions) that contains 95% of the possible
values of the output. Such an ellipsoid can be constructed from the above co-
variance matrix, but its size would be dictated by the Gaussian assumption
and not depend on the actual distribution of the values of yi. An ellipsoid is
required that contains 95% of the actual distribution. In the univariate case, it
is more valid, as considered in Section 7.3, to derive the coverage interval from
the information contained in the empirical estimate of the actual pdf. Similarly,
in the multivariate case the points yi define a cluster of points centered on y.
These yi can be expected to reflect faithfully the actual distribution, as a con-
sequence of the sampling approach used, Therefore, it is recommended to define
a coverage region by the (first-order) ellipsoid that (just) contains 95% of these
yi.

It is emphasized that this approach will provide a 95% coverage region. The
extent to which it is appropriate depends on the context. It may be highly in-
appropriate if the actual distribution of points yi is, say, star-shaped. However,
the approach is consistent with the use of the metric (7.1) with Σ = Vy.

7.5 Extensions to implicit or complex-valued mod-
els

The extension of the above concepts to implicit models is conceptually straight-
forward. Instead of forming values yi = f(xi) of the output quantity Y in the
univariate case or yi = f(xi) of Y in the multivariate case, by evaluating a for-
mula or formulae, it is necessary to solve, respectively, the equation h(yi,xi) = 0
for yi or the equations h(yi,xi) = 0 for yi. (See Chapter 6.)

7.6 Disadvantages and advantages of MCS

There are several disadvantages of MCS and a (greater) number of advantages.
The attributes of the approach are briefly reviewed.

7.6.1 Disadvantages

1. Availability of pseudo-random number generators. Pseudo-random num-
ber generators are required that are appropriate for the specified pdf’s and
joint pdf’s of the input quantities that are likely to arise in metrology.

2. Quality of pseudo-random number generators. Some pseudo-random num-
ber generators are known to yield sequences of values that fail to satisfy
standard tests for randomness.

3. Repeatability properties. The results may not be repeatable, thus making
the testing of MCS software harder. The same random number generator,
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using the same seed, must be employed to provide exactly repeatable
results.

4. Sensitivity coefficients. Sensitivity coefficients are not immediately avail-
able. MCS does not automatically provide these coefficients. See, however,
Appendix E.

5. Complicated models. The computational time required to carry out a suffi-
cient number of MCS trials may be prohibitive if the model is complicated.
See Section 7.8.

6. Model evaluation. In MCS the model is evaluated for each sample of the
input quantities and hence for a range of values (that may be a number of
“standard deviations” away from the estimates of the input quantities).
This is in contrast to the Mainstream GUM procedure in which the mea-
surement model is evaluated only at the estimates of the input quantities.
For this reason some issues may arise regarding the numerical procedure
used to evaluate the model, e.g., ensuring its convergence (where iterative
schemes are used) and numerical stability.

7.6.2 Advantages

1. Straightforward use. Software can be implemented such that the user pro-
vides information concerning just the model and the parameters defining
the pdf’s of the input quantities.

2. An estimate of the pdf of the output quantity (for univariate problems) is
provided (rather than a single statistic such as the standard deviation).
Any required statistic (standard deviation, higher-order moments, etc.),
coverage intervals and derived statistics such as the uncertainties of any
function of the output Y can be calculated from this distribution.

3. An estimate of the (joint) output pdf for multivariate problems is provided.
This takes the form of a set of (M) values (points) in the space of the out-
put quantities. This information is valuable in the context of multi-stage
models in which the output from one stage becomes the input to the next.
Sampling from these points embodies all the distributional information
(including correlation) that is present.

4. Applicability to a wide range of models. MCS is broadly applicable re-
gardless of the nature of the model:

(a) The model may be linear, mildly nonlinear or strongly nonlinear. No
initial analysis of the model is required to decide, for instance, how
many terms in the Taylor-series expansion are required to approxi-
mate f adequately for purposes of determining unbiased estimates of
statistics associated with the measurement result.

(b) The uncertainties of the input quantities may be arbitrarily large.

(c) No assumption is made concerning the pdf of the output quantity Y .
Thus, distributions that cannot be negative for instance, such as a
distribution of distances, can be properly estimated.
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5. Symmetry is not assumed. No assumption is made in using MCS concern-
ing the symmetry of the input quantities or the output quantity. Thus,
there is no need to “symmetrize” any pdf, or indeed any advantage gained
from doing so.13

6. Derivatives are not required. There is no need for algebraic expressions for
the first-order partial derivatives of the model with respect to the input
quantities and for the evaluation of these expressions at the mean values
of the input quantities.

7. Avoidance of the concept of effective degrees of freedom. MCS avoids the
concept of effective numbers of degrees of freedom: an experimental mean
and a standard deviation of a quantity, for which a Gaussian prior has been
assumed, are described by a posterior density, viz., a linearly transformed
Student’s-t distribution with the mean as the location parameter and the
standard deviation as the scale parameter.14

8. Linear computing time. The computing time is dominated by the product
of the number of trials and the time to evaluate the model f for a set
of input values. Over and above this, it is independent of the number
n of inputs. (This is not the case for the numerical evaluation of the
multivariate integral (3.1) that defines Y , where the computation time is
essentially proportional to Cn, for some constant C.)

9. Sensitivities can be calculated. MCS does not automatically provide sensi-
tivity coefficients, for two reasons. First, they are not required for purposes
of its operation. Second, for a nonlinear model, sensitivity coefficients are
in general approximate, the quality of the approximations worsening with
increased standard deviations for the input pdf’s. However, simply by
holding all input quantities but one fixed at their mean values MCS can
be used to provide the pdf for the output quantity for the model having
just that input quantity. See Section E.

10. Multi-stage models. MCS can take the output matrix Υ of vectors yi from
one stage of a multi-stage model, and carry out bootstrap-like re-sampling
at the input to the next.

7.7 Implementation considerations

This section is concerned with two implementation aspects of MCS, (i) sampling
from the pdf’s of the input quantities and (ii) carrying out an appropriate
number of Monte Carlo trials.

13The (UK) Royal Society of Chemistry state [17] that “Such an assumption [the use of
a single parameter–often taken to be the half-range] is appropriate only if the “dispersion of
values” is nearly symmetric about the measured result. It is easy to think of reasons why this
may be false, including the effects of contamination and of range shifting on instruments”.

14A discussion [36] of this issue suggests that in the case of a finite number of degrees of
freedom the standard deviation u of the Gaussian distribution should also be regarded as a
random variable. In this regard, a pdf should also be attached to u. Because of the Gaussian
assumption this pdf is distributed as χ2. A pseudo-code is available [36] that accounts for
this effect.
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Probability density functions that are commonly assigned to the input quan-
tities are the uniform, the Gaussian, the Student’s-t, and the multivariate Gaus-
sian. Methods, in the form of pseudo-random number generators, for sampling
from these pdf’s are available in a companion document [20].

Other pdf’s arise from time to time: Binomial, Gamma (including Exponen-
tial and χ2, Beta, Poisson, truncated Gaussian, etc.). The next edition of this
document will cover such pdf’s. Moreover, a general approach that is applicable
to any pdf will be outlined.

Knowing when to stop the MCS process is discussed below. This aspect is
important in terms of (a) carrying out an adequate number of trials in order
that the process has “converged” according to a specified threshold, and (b) not
carrying an excessive and hence uneconomic number of trials.

7.7.1 Knowing when to stop

When applying MCS the quality of the results depends on the number of MCS
trials made. It is not possible to say a priori how many trials will be required
to achieve a prescribed accuracy in the results. The reason is that the number
will depend on the “shape” of the pdf and the level of probability required.
Also, the calculations are stochastic in nature, being based on random sam-
pling. Therefore, any discussion concerning “convergence” cannot be couched
in the traditional numerical analysis setting of iterative methods for determin-
istic problems.

Here, a recommendation is made for determining the number of trials needed
to provide a coverage interval at, for definiteness, a 95% level of probability to
within a stipulated accuracy. It is necessary to define what is meant by accuracy.
The following definition accords with the general sentiments of the GUM in
reporting uncertainty. It is also consistent with earlier advice [10]. Suppose
that two correct figures15 are required in the standard deviation u(y) of the
measurement result y. The actual value of u(y) will have a certain number
q, say, of digits after the decimal point given by rounding that value to two
significant decimal figures.

Example 22 The number of digits after the decimal point in rounding a stan-
dard uncertainty

Suppose the measurement result for a nominally 100 g standard of mass [1,
Clause 7.2.2] is y = 100.021 47 g and the standard uncertainty of y, rounded to
two significant figures, is u(y) = 0.000 35 g, The number of digits in u(y) after
the decimal point is q = 5.

A coverage interval whose endpoints are known to a specified accuracy (viz.,
q correct digits after the decimal point) is sought. However, because the sam-
pling process is stochastic, no guarantee can be given that the required accuracy
has been achieved. Instead the practical goal of determining the endpoints of
the coverage interval to meet a statistical criterion is set. Within the context
of the sampling process, it is possible to state a 95% coverage interval for the
endpoints of a computed coverage interval.

15The approach is easily modified for other numbers of correct figures. Two figures (or often
one figure) are nearly always adequate.
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It was stated in Section 7.3 that after M MCS trials, the endpoints of a
coverage interval for Y are the 2.5-and 97.5-percentiles y(0.025M) and y(0.975M).
The endpoints of a coverage interval for the (100p)th percentile are [6] Mp ±
2{Mp(1−p)}1/2. For the 2.5- and 97.5-percentiles, these endpoints are 0.025M±
0.31M1/2 and 0.975M ± 0.31M1/2. Let

L− = [0.025M − 0.31M1/2],
L = [0.025M ],

L+ = [0.025M + 0.31M1/2],
H− = [0.975M − 0.31M1/2],
H = [0.975M ],

H+ = [0.975M + 0.31M1/2].

M is large enough when the lengths y(L+)−y(L−) and y(H+)−y(H−) of the 95%
coverage intervals for the endpoints y(L) and y(H) are no larger than 0.5×10−q,

A practical and easily implemented approach consists of carrying out M =
5, 000 (say) trials initially, calculating the value of u(y) from these results, form-
ing the value of q, computing the coverage interval and carrying out the above
accuracy check. If the check was satisfied, accept the result. Otherwise, carry
out a further 5000 trials, and recompute u(y), q and the coverage interval based
on the aggregated (increased) number of trials and carry out the checks again.
Repeat the process as many times as necessary.16

Example 23 An appropriate number of Monte Carlo trials to be taken when
determining the measurement uncertainty of a hand-held multimeter

Consider the example of Section 9.3 concerned with the calibration of a hand-
held multimeter. Table 7.1 shows the application of the above procedure. The
first column in the table gives the total number of trials taken. The second
column gives the number of digits after the decimal point in the value of u(y),
the standard deviation of the M values yi of the measurand Y ≡ EX determined
so far. The third column contains the value of u(y). The columns headed y(L)

and y(H) give the endpoints of the coverage interval formed from the appropriate
percentiles of the yi. The columns headed y(L−) and y(L+) give the lower and
upper endpoints of the coverage interval for y(L), and y(H−) and y(H+) similarly
for y(H). The columns headed L-len and H-len give the lengths of these endpoint
coverage intervals.

It is seen that these lengths reduce approximately as M−1/2, in accordance
with the point made in Section 7 concerning convergence.17 60,000 trials were
needed to reduce both of these lengths to 0.0005, and thus to give a good degree
of assurance that the coverage interval for Y ≡ EX was computed correctly to
three figures after the decimal point, in accordance with providing two significant
figures in u(y). The resulting coverage interval for the measurand, defined by

16Because the value of u(y) is much better defined by a relatively small number of trials
than are the endpoints of a coverage interval, subsequent values of u(y) are unlikely to change
much from their original values. In contrast, the coverage interval will take longer to settle
down.

17For instance, when M is increased from 15 000 to 60 000, i.e., increased by a factor of
four, L-len and H-len are approximately halved, reducing from 0.0009 to 0.0005 and from
0.0010 to 0.0005, respectively.
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M q u(y) y(L−) y(L) y(L+) y(H−) y(H) y(H+) L-len H-len
5000 3 0.0296 0.0477 0.0487 0.0501 0.1498 0.1508 0.1517 0.0024 0.0019

10000 3 0.0295 0.0490 0.0495 0.0503 0.1502 0.1507 0.1514 0.0013 0.0012
15000 3 0.0297 0.0486 0.0491 0.0496 0.1501 0.1507 0.1512 0.0009 0.0010
20000 3 0.0295 0.0489 0.0494 0.0499 0.1501 0.1506 0.1511 0.0011 0.0010
25000 3 0.0296 0.0493 0.0498 0.0502 0.1503 0.1507 0.1511 0.0009 0.0008
30000 3 0.0296 0.0492 0.0496 0.0499 0.1504 0.1507 0.1510 0.0007 0.0007
35000 3 0.0296 0.0489 0.0493 0.0497 0.1501 0.1504 0.1508 0.0008 0.0007
40000 3 0.0296 0.0493 0.0496 0.0499 0.1503 0.1506 0.1510 0.0006 0.0007
45000 3 0.0296 0.0492 0.0495 0.0497 0.1502 0.1505 0.1508 0.0005 0.0006
50000 3 0.0296 0.0490 0.0493 0.0495 0.1503 0.1506 0.1509 0.0006 0.0006
55000 3 0.0296 0.0492 0.0495 0.0498 0.1503 0.1505 0.1508 0.0005 0.0005
60000 3 0.0296 0.0491 0.0494 0.0496 0.1502 0.1504 0.1506 0.0005 0.0005

Table 7.1: An illustration of the “convergence” of the MCS procedure, when
applied to the model of a digital multimeter of Section 9.3. The first column
in the table gives the total number of trials taken. The second column gives
the number of digits after the decimal point in the value of u(y), the standard
deviation of the M values yi of the measurand Y ≡ EX determined so far. The
third column contains the value of u(y). The columns headed y(L) and y(H) give
the endpoints of the coverage interval formed from the appropriate percentiles of
the yi. The columns headed y(L−) and y(L+) give the lower and upper endpoints
of the coverage interval for y(L), and y(H−) and y(H+) similarly for y(H). The
columns headed L-len and H-len give the lengths of these endpoint coverage
intervals.
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Figure 7.5: A histogram estimating the probability density function of the out-
put of the digital voltmeter model produced using MCS.

the fifth and eighth values in the final row of the table, is [0.049, 0.150] V. This
interval is to be compared with that in [28] of (0.10± 0.05) V or, equivalently,
[0.05, 0.15] V, viz., agreement to the published number of figures.

Figure 7.5 shows a histogram that estimates the probability density function
of the output of the digital voltmeter model. The histogram was produced using
the final set of M = 60, 000 model values yi. It is essentially trapezoidal in
shape, to be compared with the statement [28], made following an approximate
analytical treatment, that the distribution is essentially rectangular.

Figure 7.6 shows the corresponding distribution function, estimated from the
ordered yi values, as described in Section 7.3. The endpoints of the estimated
95% coverage interval are indicated in this figure by vertical lines.
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Figure 7.6: The distribution function of the output of the digital voltmeter
model estimated using MCS. The endpoints of the estimated 95% coverage
interval are indicated in this figure by vertical lines.

7.8 Summary remarks on Monte Carlo Simula-
tion

MCS is a tool that is consistent with general GUM philosophy (GUM Clause
G.1.5) and also with its interpretation [61] for scientists at the National Institute
for Standards and Technology (NIST) in the United States. The major differ-
ence is that rather than propagating uncertainties through a linearized model,
the pdf’s of the input quantities are propagated through the model per se to
calculate the pdf of the output quantity. From the pdf of the output quan-
tity a coverage interval is obtained without making a Gaussian or any other
assumption concerning the form of this pdf.

MCS can straightforwardly be applied to a range of uncertainty evaluation
problems. For the most general such problem, it is emphasized that it would be
necessary to provide

1. Pseudo-random number generators for the univariate and joint pdf’s needed
in the application.

2. A mechanism for determining coverage regions for multivariate results of
measurement.

Recommendations ([20], Section 7.7.1) are intended to assist in this regard.
The degree of belief in the pdf’s of the input quantities can be considered

by repeating a simulation after having varied these functions. The sensitivity
of the results to such critical information can thus be investigated.

For sinple models the number of Monte Carlo trials can be chosen to be
substantially large, e.g., 106 (Section 7.3.1). A complete uncertainty calculation
would take some five seconds on a 1 GHz Pentium PC. More than half this time
is taken with sorting the Monte Carlo estimates of the measurement result.

For models of modest complexity, taking say 100 times longer to evaluate,
to achieve a comparable quality of result would take of the order of 200 seconds.
The figure is not 500 seconds because the sorting time remains about 3 seconds.
Nevertheless the computation time is now noticeable, particularly if many sim-
ilar calculations have to be carried out. In such cases it would be desirable to
consider the use of an automatic stopping rule (Section 7.7.1), rather than fixing
the number of Monte Carlo trials in advance.
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For very complicated models18 it would not be economic to take more than a
small number of trials (say 10). In such a case it would be impossible to provide
a coverage interval reliably. Rather, a mean and standard deviation should be
obtained and a coverage interval obtained assuming a Gaussian distribution.
(Appeal can be made to the Principle of Maximum Entropy.) For multivariate
output quantities a covariance matrix from the results can be calculated and
a multivariate Gaussian distribution assumed. As always, the results obtained
should be accompanied by a statement that indicates clearly how they were
obtained.

18An instance is a model defined by a partial differential equation.
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Chapter 8

Validation of Mainstream
GUM

This chapter describes validation tests that can be carried out to decide whether
Mainstream GUM is applicable in any particular circumstance. There are two
types of test, prior tests and post tests, carried out, respectively, before utilizing
Mainstream GUM and after having applied Mainstream GUM.

The post-test involves the use of MCS as the validation tool.

8.1 Prior test: a quick test of whether model
linearization is valid

Mainstream GUM uses the first-order Taylor expansion of the model as part of
evaluating the uncertainty associated with the result of measurement.

A quick test is described that can be used to help decide whether the first-
order Taylor series approximation employed by Mainstream GUM is adequate.
The test applies to a model with uncorrelated input quantities. Using the no-
tation of Section 6.2.1, consider the standard uncertainty u(y) in the output
quantity y obtained from

u2(y) =
n∑

i=1

c2
i u

2(xi),

a formula obtained from (6.2) when all covariances are set to zero, and ci denotes
∂f/∂Xi evaluated at X = x. The test is based on generating, for each model
input Xi, not just a single value of the sensitivity coefficient ci but three values
that are realistically likely to encompass the range of values of the first-order
partial derivative for that input quantity in the neighbourhood of its estimated
value. If the variation in these values is small enough, for all input quantities,
a first-order evaluation is adequate. “Small enough” means that the variation
is no greater than the required numerical accuracy of the solution uncertainty.
“In the neighbourhood” means, for each i, the interval about xi that covers,
say, 95% of the distribution of values of the input quantity. Thus, if one correct
figure in a relative sense is sought, this relative variation is not to exceed 0.05.
Compare with Section 7.7.1.
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This test is severe. If just one of the model input quantities failed the test,
the test overall would be regarded as failing, which would be unreasonable if
that quantity made a negligible contribution to u(y).

A less extreme and more practical test is (i) to evaluate u(y) for the smallest
of the three sensitivity coefficients for each component, (ii) as (i) but for the
largest sensitivity coefficient, and (iii) to test whether the two estimates of u(y)
agreed to one figure.

For each value of i from 1 to n, take the variation over the range x
(low)
i

to x
(high)
i , the 2.5- and 97.5-percentiles of the pdf of xi.1 The rationale for

this choice is that the pdf of y is likely to be dominated by contributions from
the input pdf’s that are “sufficiently central” to these pdf’s: taking the stated
values reflects this consideration. The variation of ci regarded as a function of
Xi, i.e., ci = ci(Xi), is thus considered over the interval xi±kiu(xi), where ki is
the coverage factor such that 95% of the pdf is embraced.2 It is therefore given
by the interval [cmin

i , cmax
i ], where

cmin
i = min ci(Xi), cmax

i = max ci(Xi),

where the minimum and maximum are taken over

Xi ∈ [xi − kiu(xi), xi + kiu(xi)].

It is considered unnecessary to determine the actual minimum and maximum
values in this interval. In the great bulk of cases ci(Xi) would change monoton-
ically over the interval, in which case the values at the endpoints would deliver
the required values. If the interval contains an extreme value strictly within it,
it is more reliable to take

cmin
i = minCi, cmax

i = maxCi,

where Ci denotes the set of three values

{ci(xi − kiu(xi)), ci(xi), ci(xi + kiu(xi))}.

This variant is the one recommended3, particularly because the third piece
of information, ci(xi), would have been evaluated in any case as part of the
conventional evaluation of u(y).

The principle can be implemented in the following way.

1. For each value i = 1, . . . , n

1For an input quantity Xi with a Gaussian pdf, xi± 1.96u(xi) can be taken. For an input
quantity Xi with a uniform pdf, take xi ± 1.65u(xi). The multiplier 1.65 is such that 95% of
the uniform pdf is covered. In general, take the appropriate 95% coverage interval.

2This interval applies to a symmetric pdf. If the pdf is asymmetric the interval becomes

[xi − k
(−)
i u(xi), xi + k

(+)
i u(xi)], where k

(−)
i and k

(+)
i are factors such that the interval is a

95% coverage interval for Xi. The modifications to be made to the subsequent considerations
are straightforward.

3It is possible to carry out more sophisticated calculations. One approach is to pass a
quadratic polynomial through the three sensitivity values, and take its minimum or maximum
as appropriate, if such a value lies within the interval. Another possibility is to evaluate ci(Xi)
on a fine mesh of values in the interval in order to determine extreme values. Such strategies
could be adopted, but their use would be inconsistent with the intent of the “quick test” of
this section.
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(a) Set ki such that [xi−kiu(xi), xi +kiu(xi)] is a 95% coverage interval
for Xi.

(b) Form c
(mid)
i = ∂f(X)/∂Xi, evaluated at x.

(c) Replace the ith component of x by x
(low)
i = xi − kiu(xi).

(d) Form ci(low) = ∂f(X)/∂Xi, evaluated at x.

(e) Replace the ith component of x by x
(high)
i . = xi + kiu(xi).

(f) Form c
(high)
i = ∂f(X)/∂Xi, evaluated at x.

(g) Restore the original value of x.

(h) Form c
(min)
i = min(c(low)

i , c
(mid)
i , c

(high)
i ).

(i) Form c
(max)
i = max(c(low)

i , c
(mid)
i , c

(high)
i ).

2. Form u(min)(y) and u(max)(y) from(
u(min)(y)

)2

=
n∑

i=1

(
c
(min)
i

)2

u2(xi)

and (
u(max)(y)

)2

=
n∑

i=1

(
c
(max)
i

)2

u2(xi).

3. The prior test is satisfied if

u(y)− u(min)(y) ≤ 0.05u(y)

and
u(max)(y)− u(y) ≤ 0.05u(y).

If two correct figures are required, the value of 0.05 in the above procedure is
to be replaced by 0.005.

8.2 Validation of Mainstream GUM using MCS

Any case of doubt in the applicability of Mainstream GUM should be validated.
In an instance where the Mainstream GUM approach was indeed validated, prac-
titioners could safely continue to employ it in that circumstance or in situations
that could be regarded as comparable. If it was not so validated, it would be
necessary to use an alternative procedure in future. It is recommended that the
process (MCS) at the core of the validation procedure is used for that purpose.

It is essential to note that even if Mainstream GUM had been validated in
terms of the coverage interval at a specific level of probability, it does not follow
that the validation extends to coverage intervals at other levels of probability.
For instance, many pdf’s differ in the manner in which their “tails” behave.
Thus, good agreement in the 95% coverage intervals that have been provided
by Mainstream GUM and MCS by no means applies to, say a 99% level. This
point is reinforced by the fact that the graphs of a number of pdf’s tend to
“intersect” not far from the endpoints of a 95% coverage interval.

A validation procedure can be based on the following points.
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1. Given: Mainstream GUM results in the form of

(a) a measurement result y,

(b) a combined standard uncertainty u(y),

(c) a 95% coverage interval y±U , where U denotes expanded uncertainty
determined as part of the Mainstream GUM procedure.

2. Given: MCS results in the form of

(a) a measurement result y(MCS),

(b) a corresponding standard uncertainty u(y(MCS)),

(c) the endpoints y
(MCS)
low and y

(MCS)
high of a 95% coverage interval for

the measurand.

3. Define q to be the number of figures after the decimal point in u(y(MCS)),
after this value has been rounded to two, say, significant decimal digits.

4. Aim: determine whether there are q correct digits after the decimal point
in u(y) and the endpoints y − U and y + U .

5. Approach: compare the Mainstream GUM and MCS results to determine
whether the required number of correct digits has been obtained.

Further details are available [20].
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Chapter 9

Examples

The examples in this chapter are intended to illustrate the principles contained
in the body of this guide. Where appropriate, two approaches, Mainstream
GUM and Monte Carlo Simulation, are used and contrasted. Some examples
can be regarded as typical of those that arise in metrology. Others are more
extreme, in an attempt to indicate the considerations that are necessary when
those of “normal circumstances” fail to apply. Perhaps, unfortunately, such
adverse circumstances arise more frequently than would be wished, in areas such
as limit of detection, electromagnetic compliance, photometry and dimensional
metrology.

Many other examples are given throughout this guide, some to illustrate
basic points and others more comprehensive.

9.1 Flow in a channel

This example was provided by the National Engineering Laboratory. It concerns
an implicit model arising in channel flow.

Open channel flows are common in the water and hydroelectric power indus-
tries and where river extraction provides cooling water for industrial processes.
Such a flow can be measured by introducing a specially constructed restriction
in the flow channel. The flow is then a function of the geometry of the restric-
tion (width upstream, throat width and length, height of the hump in the floor
of the restriction) and the depth of water passing through the restriction.

The model input quantities and estimates of their values are:
Approach channel width B = 2.0 m, Throat width b = 1.0 m,
Hump height p = 0.25 m, Throat length L = 3.0 m,
Nominal head h = 1.0 m

The output quantity is the flow rate Q. The model relating Q to the input
quantities is

Q = (2/3)3/2g1/2CvCDbh3/2,

with g = 9.812 ms−2, the acceleration due to gravity,

CD = (1− 0.006L/b)(1− 0.003L/h)3/2 (9.1)

and
4b2h2C2

v − 27B2(h + p)2(C2/3
v − 1) = 0. (9.2)
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To calculate Q for any values of the input quantities, it is first necessary to form
CD from the explicit formula (9.1) and Cv from the implicit equation (9.2).1

The first four input quantities are geometric dimensions obtained by a se-
ries of measurements with a steel rule at various locations across the flume.
There are uncertainties in these measurements due to location, rule reading
errors and rule calibration. Head height is measured with an ultrasonic detec-
tor, uncertainties arising from fluctuations in the water surface and instrument
calibration.

All uncertainty sources were quantified and appropriate pdf’s assigned. All
pdf’s were based on Gaussian or uniform distributions. The standard deviations
of these pdf’s (standard uncertainties of the input quantities) were all less than
0.3% relative to the means (estimated values).

Both the Mainstream GUM procedure (Section 6) and the Monte Carlo pro-
cedure (Section 7) were applied. The Mainstream GUM results were validated
(Section 8) using the Monte Carlo procedure, under the requirement that results
to two significant figures were required. In fact, the coverage interval for y as
produced by Mainstream GUM was confirmed correct (by carrying out further
Monte Carlo trials) to three significant figures. To quote the comparison in a
relative sense, the quotient of (a) the half-length of the 95% coverage interval
for y (≡ Q) and (b) the standard uncertainty of y was 1.96, which agrees to
three significant figures with the Mainstream GUM value, viz., the (Gaussian)
coverage factor for 95% coverage. For further comparison, the corresponding
quotients corresponding to 92.5% and 97.5% coverage intervals were 1.78 and
2.24, also in three-figure agreement with Mainstream GUM results. It is con-
cluded that the use of Mainstream GUM is validated for this example for the
coverage probabilities indicated.

9.2 Graded resistors

This example is intended to cover an instance where it would be important to
take specific account of the pdf of an input quantity to help ensure that valid
results are obtained from an uncertainty evaluation.

The uncertainties of a mass-produced electrical circuit are to be evaluated.
The circuit contains electrical components of various types. One of these com-
ponent types, a resistor, is considered here.

High-grade (nominally) 1 Ω resistors are graded according to their specifica-
tion. A-grade resistors are those that lie within 1% of nominal, B-grade within
5% and C-grade within 10%. The allocation of resistors to the various grades
is decided by measurement. For the purposes of this example, the uncertainty
of this measurement is taken as negligible. As each resistor is measured it is
allocated to an A-grade, a B-grade, a C-grade or an unclassified “bin”. The al-
location is made in the following sequential manner. If a resistor has resistance
in the interval (1.00± 0.01) Ω it is allocated to the A-grade bin. If not, and it
has resistance in the interval (1.00± 0.05) Ω it is allocated to the B-grade bin.

1This equation is in fact a cubic equation in the variable C
2/3
v and, as a consequence, Cv

can be expressed explicitly in terms of B, h and p. Doing so is unwise because of the possible
numerical instability due to subtractive cancellation in the resulting form. Rather, the cubic
equation can be solved using a recognised stable numerical method.
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Figure 9.1: A histogram produced by MCS to estimate the probability density
function for the Grade-C resistor.

If not, and it has resistance in the interval (1.00± 0.10) Ω it is allocated to the
C-grade bin. Otherwise, it is allocated to the unclassified bin.

For the circuit application, C-grade resistors are selected. All such resistors
have a resistance in the interval [0.90, 0.95] Ω or the interval [1.05, 1.10] Ω.
From the knowledge of the manufacturing process, the pdf of the resistance of
a resistor before the allocation process is carried out can be taken as Gaussian
with mean 1.00 Ω and standard deviation 0.04 Ω.

Consider the use of three such resistors in series within the circuit to form a
(nominally) 3 Ω resistance.

The model for the 3 Ω resistance R is

R = R1 + R2 + R3,

where Ri denotes the resistance of resistor i. Each Ri has a pdf as above. What
is the pdf of R and what is a 95% coverage interval for R?

Figures are used to show diagrammatically histograms and distribution func-
tions of the results of using MCS to estimate the pdf’s. An analytic or semi-
analytic treatment is possible, but MCS enables results to be provided rapidly.
All results are based on the use of M = 105 Monte Carlo trials.

Figure 9.1 shows a histogram of the pdf of Ri. It is basically Gaussian, with
the central and tail regions removed as a consequence of the grading process.

Figure 9.2 shows the corresponding distribution function produced by MCS
in the manner of Section 7.3 The endpoints of the estimated 95% coverage
interval are indicated by vertical dashed lines and the corresponding endpoints
under the Gaussian assumption by vertical dotted lines.

Figure 9.3 shows a histogram produced by MCS to estimate the probability
density function for R, three Grade-C resistors in series.

The pdf is multimodal, possessing four maxima. The mean of the pdf is
3.00 Ω, the sum of the means of the three individual pdf’s, as expected. This
value is, however, unrepresentative, an “expectation” that could rarely occur.

Figure 9.4 shows the corresponding distribution function produced in the
manner of Section 7.3.

The pdf of Figure 9.3 could be perceived as an overall bell-shape, with strong
structure within it. Indeed, the counterpart of these results for six resistors in
series, as illustrated in Figures 9.5 and 9.6, lies even more in that direction.

Table 9.1 summarises the numerical results, and also includes the results
for n = 10 and 20 resistors. It is reassuring that, considering the appreciable
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Figure 9.2: The distribution function corresponding to the probability distri-
bution function of Figure 9.1. The endpoints of the estimated 95% coverage
interval are indicated by vertical dashed lines and the corresponding endpoints
under the Gaussian assumption by vertical dotted lines.
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Figure 9.3: A histogram produced by Monte Carlo Simulation to estimate the
probability density function for R, three Grade-C resistors in series.
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Figure 9.4: The distribution function corresponding to the probability distri-
bution function of Figure 9.3. The endpoints of the estimated 95% coverage
interval are indicated by vertical dashed lines and the corresponding endpoints
under the Gaussian assumption by vertical dotted lines.
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Figure 9.5: A histogram produced by Monte Carlo Simulation to estimate the
probability density function for six Grade-C resistors in series.
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Figure 9.6: The distribution function corresponding to the probability distri-
bution function of Figure 9.5. The endpoints of the estimated 95% coverage
interval re indicated by vertical dashed lines and the corresponding endpoints
under the Gaussian assumption by vertical dotted lines.
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No. n of Standard Endpoints of 95% coverage intervals
resistors uncertainty Monte Carlo Mainstream GUM

1 0.07 0.91 1.09 0.87 1.13
3 0.12 2.78 3.22 2.77 3.23
6 0.17 5.69 6.31 5.68 6.32

10 0.21 9.58 10.42 9.58 10.42
20 0.30 19.41 20.59 19.41 20.59

Table 9.1: Evaluation of 95% coverage intervals for n Grade-C 1 Ω resistors
in series using Monte Carlo Simulation and Mainstream GUM. The units of
Columns 2-6 are ohms.

departure from normality, the coverage interval “converges” rapidly to that ob-
tained under the assumption that the output pdf is Gaussian (as in Mainstream
GUM). These are no grounds for complacency, however: there will be situations
where the use of Mainstream GUM is not so favourable.

As stated, an analytical treatment would be possible for this problem. It
might be difficult to justify the effort required, however, unless the analysis
provided some general insight that would give added value to the application.
Using existing MCS software, it required approximately one hour to enter the
problem and produce the numerical and graphical results. The computation
time itself was negligible, being a few seconds in all.

9.3 Calibration of a hand-held digital multime-
ter at 100 V DC

A hand-held digital multimeter (DMM) is calibrated at an input of 100 V DC
using a multifunction calibrator as a working standard. A model for the error
of indication EX of the DMM [28] is

EX = ViX − VS + δViX − δVS ,

where the model input quantities and their pdf’s are defined and assigned as
follows:

DMM reading ViX . The voltage indicated by the DMM (the index i meaning
“indication”). Because of the limited resolution of the device, no scatter is
observed in the indicated values. Therefore, the indicated voltage, 100.1 V,
at the calibrator setting of 100 V, is taken as exact.

Voltage VS generated by the calibrator. The calibration certificate for the
calibrator states that the voltage generated is the value indicated by the
calibrator setting and that the associated expanded uncertainty of mea-
surement associated with the 100 V setting is U = 0.002 V with a cov-
erage factor of k = 2. In the absence of other knowledge a Gaussian
pdf with mean 100 V and standard deviation 0.001 V (obtained from
U/k = 0.002/2) is therefore assigned to this input.

Correction δViX of the indicated voltage of the DMM. The least signif-
icant digit of the DMM display corresponds to 0.1 V as a consequence of
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the finite resolution of the instrument. Each DMM reading is therefore
taken to have a correction of 0.0 V, the error in this value lying in the
interval ±0.05 V . In the absence of other knowledge, a uniform pdf with
mean 0.0 V and standard deviation 0.029 V (obtained from 0.05/

√
3) is

therefore assigned to this input.

Correction δVS of the calibrator voltage. The calibrator voltage is in prin-
ciple corrected for a range of effects including drift, mains power deviations
and loading. An analysis [28] gives a correction of 0.0 V and states that
the error in this value lies in the interval ±0.011 V .2 In the absence of
other knowledge, a uniform pdf with mean 0.0 V and standard deviation
0.0064 V (obtained from 0.011/

√
3) is therefore assigned to this input.

This model was analyzed using Monte Carlo Simulation. Details are given in
Section 7.7.1. The error of indication of the DMM was found to be 0.100 V with
a 95% coverage interval of [0.049, 0.150] V. The corresponding result obtained by
an approximate analytical treatment [28] was (0.10± 0.05) V, i.e., in agreement
to the figures quoted.

9.4 Sides of a right-angled triangle

This example is intended to illustrate the use of statistical modelling, as de-
scribed in Section 4.2. It also illustrates the manner in which correlation effects
can sometimes be removed by the introduction of an additional variable, as
indicated in Section 4.2.1.

The sides of a right-angled triangle are repeatedly measured with a length-
measuring instrument. The measurements contain random and systematic ef-
fects. Use all these measurements to determine best estimates of the sides of
the triangle and evaluate their uncertainties.

Denote the shorter sides of the triangle by A and B and the hypotenuse
by H. Let there be nA measurements of A, nB of B and nH of H. Let the
ith measurement of A be ai, with error ∆ai, and similarly for B and H. The
relationships between the measurements, the “true” values and the errors are

ai = A + ∆ai, i = 1, . . . , nA,
bi = B + ∆bi, i = 1, . . . , nB ,
hi = H + ∆hi, i = 1, . . . , nH .

According to Pythagoras’ theorem, the sides are physically related by

A2 + B2 = H2. (9.3)

For consistency, the solution values of A, B and H are to satisfy this condition.
The errors ∆ai, etc. are statistically related in that the instrumental sys-

tematic effect will manifest itself in all these values. Its “presence” means that
all measurements are correlated. In order to quantify this correlation, it is

2Since this correction is based on a number of effects, it does not seem reasonable (cf.
Section 4.3.3 to regard the error as equally likely to take any value in this interval. However,
since the effect of this input on the model output is relatively small, and since an intention
is to compare the EA approach with that of Mainstream GUM, M3003 and MCS, the above
form is taken.
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conventionally necessary to know the standard deviation u(∆L) of the instru-
mental systematic effect and the repeatability standard deviation urep of the
measurements.

A covariance matrix based on this correlation can then be established3 and
the above equations solved by least squares with an “input covariance matrix”
equal to this covariance matrix. Generic details of this approach, Gauss-Markov
estimation, are available [22]. Formally, the result is in the form of a GUM model

Y ≡ (A, B)T = f(a1, . . . , anA
, b1, . . . , bnB

, h1, . . . , hnH
).

The measurements ai, bi and hi are the input quantities (nA + nB + nH in
number) and A and B are the (two) output quantities. The third side, H,
the hypotenuse of the triangle, is not included as an output quantity, since it
can be formed from A and B using (9.3). f denotes the model. It cannot,
at least conveniently, be written down mathematically, but is defined by the
computational procedure that implements the least-squares solution process.

Propagation of the input covariance matrix through the model to provide
the covariance matrix of (A, B)T can be carried out as discussed in Section
6.2. The use of Equation (9.3) as a “next-stage” model (cf. Section 4.2.3),
providing the output H in terms of A and B, can then be used to determine
the uncertainty of H. The results can be combined to provide the covariance
matrix of (A, B, H)T.

Statistical modelling can be used to provide the required sides and their
uncertainties without having to work with correlated quantities and, in this
instance, without prior knowledge of the above standard deviations. Regard
this systematic effect as an unknown bias ∆L and write

∆ai = ∆L + δai,

etc., where δai is the random error in ai, etc. The above relationships become

ai = A + ∆L + δai, i = 1, . . . , nA,
bi = B + ∆L + δbi, i = 1, . . . , nB ,
hi = H + ∆L + δhi, i = 1, . . . , nH .

The errors δai, etc. are uncorrelated, the covariance matrix being diagonal with
all entries equal to u2

rep. Best estimates of the sides (and ∆L) are then given
by an ordinary least-squares problem (Gauss estimation). First, it is necessary
to incorporate the condition (9.3) [22]. There are various ways to do so in
general, but here it is simplest to use the condition to eliminate a variable. One
possibility is to replace H by (A2+B2)1/2 or, letting θ denote the angle between
sides A and H, set

A = H cos θ (9.4)

and
B = H sin θ. (9.5)

3The covariance matrix, of order nA + nB + nH , can be built from

1. var(ai) = var(bi) = var(hi) = u2
rep + u2(∆L),

2. All covariances are equal to u2(∆L).

(The standard uncertainty u(∆L) associated with the instrumental systematic effects may not
be available explicitly from the calibration certificate of the instrument, but should be part of
the detailed “uncertainty budget” for the calibration.)
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The latter choice gives the least-squares formulation

min
H,θ,∆L

S =
nA∑
i=1

(
ai −H cos θ −∆L

urep

)2

+
nB∑
i=1

(
bi −H sin θ −∆L

urep

)2

+
nH∑
i=1

(
hi −H −∆L

urep

)2

.

Its solution could be found using the Gauss-Newton algorithm or one of its
variants [22].4

Many such problems would be solved in this manner. In this particular case,
by defining new parameters

v1 = H cos θ + ∆L, v2 = H sin θ + ∆L, v3 = H + ∆L (9.6)

and v = (v1, v2, v3)T, the problem becomes

min
v

nA∑
i=1

(ai − v1)2 +
nB∑
i=1

(bi − v2)2 +
nH∑
i=1

(hi − v2)2.

The problem separates into three trivial independent minimization problems,
giving the solution

v1 = ā =
nA∑
i=1

ai/nA,

and similarly v2 = b̄ and v3 = h̄.
The equations (9.6) can then straightforwardly be solved for H, ∆L and

θ, from which A and B are determined from (9.4) and (9.5). The relevant
uncertainties and covariance matrices are readily found using the principles of
Section 6.

Since the value of u2
rep is common to all terms in the sum, the minimizing

values of H, θ and ∆L do not depend on it. The term may therefore may
replaced by unity (or any other constant). Thus, the solution can be obtained
without knowledge of the random repeatability uncertainty or the systematic
instrumental uncertainty.

The covariance matrix associated with the solution values of H, θ and ∆L
provides the required output uncertainties.

9.5 Limit of detection

This example is intended to provide a simple illustration of how measurements of
analyte concentration at the limit of detection can be analysed to furnish a value

4Advantage can be taken as follows of the fact that the problem is linear in two of the
unknowns, H and ∆L. Equate to zero the partial derivatives of S, with respect to H, θ and
∆L, to give three algebraic equations. Eliminate H and ∆L to give a single nonlinear equation
in θ. Solve this equation using a suitable “zero-finder” (cf. Section 6.2.3). Determine H and
∆L by substitution.
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Figure 9.7: The Gaussian probability density function for the input quantity
for the limit of detection problem. The 95% coverage interval that would con-
ventionally be obtained for the analyte concentration is indicated.

for the measurand and its uncertainty. It utilizes basic statistical modelling
principles.

The framework is as given in Section 4.2.2 on constrained uncertainty eval-
uation. The GUM model (4.5), repeated here, is

Y = max(X, 0),

where the input quantity X is observed (unconstrained) analyte concentration
and the measurand Y real (constrained) analyte concentration.

X is estimated by x, the arithmetic mean of a number of (unconstrained)
observations of analyte concentration. Its standard uncertainty is estimated by
the standard deviation of this value. At or near the limit of detection, some of
the observations would be expected to take negative values. If the measurements
related to an analytical blank [32, Clause F2.3], used subsequently to correct
other results, on average as many negative as positive values might be expected.
If the analyte was actually present a preponderance of positive over negative
values would be expected. Numerical values to represent this latter situation
are chosen. The treatment is general, however, and can readily be repeated
for other numerical values, even including a negative value for the mean of the
observations.

Suppose that nothing is known about the observations other than that they
can be regarded as independently and identically distributed. The use of the
Principle of Maximum Entropy would indicate that the input X can be re-
garded as a Gaussian variable with the above mean and standard deviation.
For illustrative purposes, take the mean x = 1.0 ppm and the standard devia-
tion u(x) = 1.0 ppm.

The pdf of the input quantity5 and the model are thus fully defined.
Figure 9.7 illustrates this Gaussian pdf and indicates the 95% coverage in-

terval that would conventionally be obtained for the analyte concentration.
For the above numerical values the corresponding pdf is given in Figure 9.8.
The area to the left of the origin under the Gaussian pdf with mean x and

standard deviation u(x) is Φ((0− x)/u(x)) (see Section 4.3.1). The fraction of

5Other pdf’s can be entertained. The subsequent treatment might not be as simple as that
here, but can be addressed using Monte Carlo Simulation or other methods as appropriate.
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Figure 9.8: As Figure 9.7, but for the case in the text where the mean x =
1.0 ppm and the standard deviation u(x) = 1.0 ppm.
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Figure 9.9: The pdf for the input quantity for the limit of detection problem

the values of Y = max(X, 0) that is zero is equal to this value. For the above
numerical values, the fraction is Φ(−1.0) = 0.16. So, 16% of the distribution of
values that can plausibly be ascribed to the measurand take the value zero.

The pdf for the input quantity is indicated in Figure 9.9. That for the output
quantity is depicted in Figure 9.10. In Figure 9.10 16% of the area under the
curve is concentrated at the origin. Strictly, this feature should be denoted by a
Dirac delta function (having “infinite height and zero width”). For illustrative
purposes only, the function is depicted as a “tall thin” solid rectangle.

The shortest 95% coverage interval for the measurand therefore has (a) zero
as its left-hand endpoint, and (b) as right-hand endpoint that value of X for
which Φ((X − x)/u(x)) = 0.95, viz., X = 2.6 ppm. Thus, the required 95%
coverage interval is [0.0, 2.6] ppm.6

Figure 9.11 shows the distribution function G(Y ) for Y , with endpoints of the
95% coverage interval indicated by vertical lines. G(Y ) “rises instantaneously”
at Y = 0 from zero to 0.16 and thereafter behaves as the Gaussian distribution
function.7

The mean and standard uncertainty of G(Y ) are readily shown to be y =
1.1 ppm and u(y) = 0.9 ppm.

By comparison, the Mainstream GUM approach would yield a result as

6A Monte Carlo Simulation confirms this result.
7It is apparent from this figure that if a 95% coverage interval with 2.5% of the distribution

in each tail were chosen the interval would be longer, in fact being [0.0, 3.0] ppm. Of course,
since more than 5% of the distribution is at Y = 0, the left-hand endpoint remains at zero for
any 95% coverage interval.
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Figure 9.10: The pdf for the output quantity for the limit of detection problem.
16% of the area under the curve is concentrated at the origin. Strictly, this
feature should be denoted by a Dirac delta function (having “infinite height and
zero width”). For illustrative purposes the function is depicted as a “tall thin”
solid rectangle.
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Figure 9.11: The distribution function for the limit of detection problem. The
right-hand endpoint of the 95% coverage interval is indicated by a vertical line.
the left-hand endpoint is at the origin.
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follows. Since, in the neighbourhood of the input estimate x = 1.0 ppm, the
model behaves as Y = max(X, 0) = X, Mainstream GUM gives y = 1.0 ppm
as a point estimate of the measurand. Moreover, the sensitivity coefficient c is

∂f

∂X
= 1,

evaluated at X = 1.0 ppm, viz., c = 1. Thus,

u(y) = |c|u(x) = 1.0 ppm.

It follows that a 95% coverage interval based on Mainstream GUM considera-
tions is (1.0± 2.0) ppm or [−1.0, 3.0] ppm, following the use of Formula (6.2).

This interval is longer than the model-based interval [0.0, 2.6] ppm and
extends into the infeasible region. As stated earlier in this example, such an in-
terval is appropriate for summarising the observations, but not for the physically
constrained measurand, the real analyte concentration.

Similar principles can be applied to the measurement of the concentrations
of a number of solution constituents. The analysis would be harder, but readily
supported by the use of MCS.

9.6 Constrained straight line

The determination of suitable calibration lines and curves is a widespread re-
quirement in metrology. The parameters of these lines and curves (and of models
in general) may have to meet stipulated criteria in order that they reflect ap-
propriate physical properties. For instance, a temperature in Kelvin cannot be
negative.

Consider the length of a gauge block as its temperature is gradually in-
creased. Suppose that for each of a sequence of increasing controlled tempera-
ture values the length of the block is measured. It is required to estimate the
coefficient of expansion of the metal of which the block is made. The tempera-
tures can be assumed to be known accurately and the measured lengths contain
error. It is assumed that these errors have a Gaussian pdf.

A least-squares straight-line fit to the data is appropriate. The gradient of
the line (the rate of change of length with respect to temperature) provides an
estimate of the coefficient of expansion.

It can be shown that the gradient has an error that described by the Student’s-
t distribution (cf. [1]). This distribution is the pdf of the output quantity and
its use permits a coverage interval for the gradient to be obtained.

This process can often be expected to be satisfactory. This statement applies
even though the Student’s-t distribution has infinite tails, implying that the
left-hand tail includes zero and hence that there is a finite probability that the
gradient is negative. This matter is of little concern since the tail probability is
often very small indeed.

There are circumstances, however, where this aspect may be a concern,
especially in the context of a procedure or computer software that might be
used in a wide range of circumstances.

Consider a gauge block made from a material having a very small coefficient
of expansion. In this situation the estimated uncertainty in the coefficient of
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expansion could be comparable in size to the value of the coefficient itself. As
a consequence, the application of conventional approaches to determining a
coverage interval might produce an interval containing zero! Cf. the limit of
detection example (Section 9.5).

Alternative approaches, including MCS, can be used to avoid this anomaly.
Suppose that MCS is used to compute many estimates of the best-fitting straight
line and hence of the gradient (expansion coefficient). Each MCS trial involves
sampling from the Gaussian pdf associated with the measured lengths, fitting
a constrained line to the sampled data given by these lengths corresponding to
the fixed values of the independent variables, and taking its gradient as the
corresponding measurement result. The set of gradients so obtained form the
basis, as in Section 9.5, for a distribution function of the gradient and hence a
coverage interval.

The term “constrained line” is used to indicate the fact that for any set of
sampled data a straight line with an intercept parameter and a gradient param-
eter must be fitted subject to the condition that the gradient is not negative. It
is straightforward to use conventional fitting procedures for this purpose. First,
a straight line is fitted to the data without imposing the condition. If the gra-
dient of the line were positive (or zero) the line would automatically satisfy the
condition and would therefore be the required solution. Otherwise, the “best”
line that can be fitted that satisfies the constraint would have a zero gradient.
Such a line is a constant. This constant is easily found, since the best least-
squares fit by a constant is the same problem as finding the arithmetic mean of
the data.

Thus the sequence of M , say, gradients so obtained will include some zero
values, the remainder being strictly positive. The estimated distribution func-
tion for the gradient Y , as that for the limit of detection problem (Section 9.5),
therefore has a jump discontinuity at y = 0, the magnitude of which is the
proportion of trials that gave zero gradient, followed by a “smooth” increase
through increasing gradient values.

A simple Monte Carlo Simulation was carried out. The data used consisted
of the points (18, 23), (19, 24), (20, 26), (21, 27), (22, 28), where the first co-
ordinated denotes temperature in ◦C and the second length measurement in a
normalised variable. Figure 9.12 depicts the five gauge block length measure-
ments against temperature (large blobs) and 100 simulations (small blobs) of
these measurements obtained from sampling from assigned Gaussian pdf’s. For
the simulation the standard uncertainty of the length measurements was taken
as 0.005 and used as the standard deviation of the Gaussian pdf’s.

For some of the synthesised sets of five measurements the gradient of an un-
constrained least-squares straight line would be negative, were it not infeasible.

The results from the use of a large number (100,000) of trials gave a distri-
bution function for the gradient very similar to that for the limit of detection
problem (Section 9.5).

9.7 Fourier transform

Consider measurements of a periodic phenomenon. Such measurements are
commonplace in many branches of metrology. Suppose a complete period is
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Figure 9.12: The five gauge block length measurements against temperature
(large blobs) and 100 simulations of these measurements obtained from sam-
pling from assigned Gaussian pdf’s. For some of the synthesised sets of five
measurements the gradient of an unconstrained least-squares straight line would
be negative.

measured in that n values x = (x1, . . . , xn)T are available. These values corre-
spond to the uniformly spaced angles θ = (θ1, . . . , θn)T, where θi = 2π(i−1)/n.

A Fourier transform of such data provides information concerning the fre-
quency content of the data.

Each Fourier coefficient depends on all (or most of) the values of xi, regarded
as the input quantities, and is a linear combination of them.

Suppose that the errors of measurement can be regarded as mutually inde-
pendent with standard deviation σ. The covariance matrix for the measurement
errors or, equivalently, for the input quantities xi, is therefore given by

Vx = σ2I, (9.7)

where I is the identity matrix of order n. It is required to evaluate the uncertain-
ties in the Fourier transform of this data, i.e., in the coefficients of the Fourier
representation of the data. The coefficients constitute the (vector) measurand.

The Fourier representation of the data is

h(θ) = a0 + a1 cos θ + b1 sin θ + · · ·+ ar cos rθ + br sin rθ,

where r = bn/2c. (When n is even, the coefficient br of sin rθ is in fact zero.)
Let y = (y1, . . . , y2r+1)T = (a0, a1, b1, . . . , ar, br)T, the output quantities. The
Fourier transform y of x is then given implicitly by

x = Ay, (9.8)

where

A =


1 cos θ1 sin θ1 . . . cos rθ1 sin rθ1

1 cos θ2 sin θ2 . . . cos rθ2 sin rθ2

...
...

...
...

...
...

1 cos θn sin θn . . . cos rθn sin rθn


is the matrix of order n of Fourier basis-function values. Formally, the Fourier
coefficients are given in terms of the data using

y = A−1x (9.9)
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or, equivalently, from a formula that expresses the ti as linear combinations of
the xi, where the multipliers are sine and cosine terms. (In practice, t would be
computed from x using the fast Fourier transform (FFT) [8].) The FFT gives
far greater efficiency than would be obtained from the application of general-
purpose linear-algebra techniques, and also greater numerical accuracy.8

Denote the covariance matrix of y by Vy. The application of (6.10) to (9.8)
gives

Vx = AVyAT.

This result is exact since the output quantity y and the input quantity x are
related linearly through (9.8), and linearisation introduces no error in this case.
Since A is invertible,

Vy = A−1VxA−T.

This expression enables in general the covariance of the Fourier coefficients to
be computed from that of the data. As a consequence of (9.7),

Vy = σ2A−1A−T = σ2(ATA)−1.

Now, using the fact that θ is equiangular and the fundamental properties of the
trigonometric functions, it is straightforward to show that

ATA =
n

2
diag

{
2, 1, . . . , 1

}
,

giving

(ATA)−1 =
2
n

diag
{

1
2 , 1, . . . , 1

}
.

Consequently,

Vy =
2
n

σ2diag
{

1
2 , 1, . . . , 1

}
.

This result states that for data errors that are independent with standard un-
certainty σ, the errors in the Fourier coefficients are (also) independent, with
standard uncertainty equal to σ scaled by the factor

√
2/n, where n is the

number of points (with the exception of the constant term for which the fac-
tor is

√
1/n). Moreover, each Fourier coefficient is a linear combination of n

raw data values, the multipliers being the products of a constant value and
that of values of cosines and sines (and thus lying between -1 and +1). Conse-
quently, if n is large9 regardless of the statistical distributions of the errors in
the data, the errors in the Fourier coefficients can be expected to be very close
to being normally distributed. This result is an immediate consequence of the
Central Limit Theorem when using the Fourier transform to analyse large num-
bers of measurements having independent errors. Thus, it is valid to regard the
resulting Fourier coefficients as if they were independent Gaussian-distributed
measurements.

The outputs, the Fourier coefficients, from this process become the inputs
to the subsequent stage, viz., the evaluation of the Fourier series h(θ) for any
value of θ. Now, since, as shown, the Fourier coefficients are uncorrelated,

u2(h(θ)) = u2(a0)+u2(a1) cos2 θ+u2(b1) sin2 θ · · ·+u2(ar) cos2 rθ+u2(br) sin2 rθ.

8In exact arithmetic, the FFT and (9.9) give identical results, since mathematically they
are both legitimate ways of expressing the solution.

9In high-accuracy roundness measurement, e.g., n = 2000 would be typical.
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Using the results above,

u2(h(θ)) =
σ2

n
+

2σ2

n
cos2 θ+

2σ2

n
sin2 θ+. . .+

2σ2

n
cos2 rθ+

2σ2

n
sin2 rθ, (9.10)

which simplifies to σ2. Thus,

u(h(θ)) = σ,

i.e., the uncertainty in the Fourier representation of a data set when evaluated
at any point is identical to the uncertainty in the data itself. This property is
remarkable in that the (interpolatory) replacement of data by other functions
usually gives an amplification of the raw data uncertainty, at least in some
regions of the data.
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Chapter 10

Recommendations

The Guide to the Expression of Uncertainty in Measurement (GUM) provides
internationally-agreed recommendations for the evaluation of uncertainties in
metrology. Central to the GUM is a measurement model with input quantities,
defined by probability distributions, and a measurand with a corresponding
measurement result that, consequently, is also a probability distribution. The
use of the GUM permits the uncertainty of the measurand to be evaluated. In
particular, an interval (termed here a coverage interval) that can be expected to
encompass a specified fraction of the distribution of values that could reasonably
be attributed to the measurand can be obtained.

It will always be necessary to make some assertions about the uncertainties
associated with the model input quantities. That is the metrologist’s task.
To state no knowledge of certain contributions is unhelpful. The metrologist
needs to make statements, using expert judgement if necessary, about what he
believes, and those statements provide the basis for the analysis, until better
statements become available. After all, he is best-placed to do this. If everything
is recorded, the quoted uncertainty can be defended in that light.

Arguably, the worst-case scenario is when the metrologist genuinely feels he
knows nothing about the nature of an uncertainty contribution other than an
asserted upper limit on the uncertainty of the input quantity. (If he cannot
even quote that, the uncertainty evaluation cannot be progressed at all!) In this
situation the Principle of Maximum Entropy would imply that the best estimate
of the underlying probability distribution is uniform, with bounds provided by
the limit.

In general, it is recommended that all model input quantities are charac-
terised in terms of pdf’s. By doing so the metrologist is able to incorporate
to the maximum his degree of belief in the various input quantities. In partic-
ular, if little or very little information is available, appeal to the Principle of
Maximum Entropy permits a defensible pdf to be provided.

Once the model, and the pdf’s of the input quantities are in place, it is
possible to use a variety of tools for determining the pdf of the output quantity
and thence a coverage interval or coverage region.

The attributes of the various approaches considered, all in a sense covered
by the full GUM document, are to be taken into account when selecting whether
to apply Mainstream GUM, MCS or other analytical or numerical methods.

Validation of the approach used is important in cases of doubt. The use of
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MCS to validate Mainstream GUM is urged when it is unclear whether the latter
is applicable in a certain situation. MCS can also be seen as a widely-applicable
tool for uncertainty evaluation.

[GUM, Clause 0.4] The actual quantity used to express uncertainty
should be:

1. Internally consistent: it should be directly derivable from the
components that contribute to it, as well as independent of how
these components are grouped and of the decomposition of the
components into subcomponents;

2. Transferable: it should be possible to use directly the uncer-
tainty evaluated for one result as a component in evaluating
the uncertainty of another measurement in which the first re-
sult is used.

3. . . . it is often necessary to provide an interval about the mea-
surement result that may be expected to encompass a large
fraction of the distribution of values that could reasonably be
attributed to the quantity subject to measurement. Thus the
ideal method for evaluating and expressing uncertainty in mea-
surement should be capable of readily providing such an in-
terval, in particular, one with a coverage probability or level
of probability that corresponds in a realistic way with that re-
quired.

These are laudable properties and objectives. It is reasonable to summarize
them and to infer further aims as follows:

1. All information used to evaluate uncertainties is to be recorded.

2. The sources of the information are to be recorded.

3. Any assumptions or assertions made are to be stated.

4. The model and its input quantities are to be provided in a manner that
maximizes the use of this information consistent with the assumptions
made.

5. Uncertainties are to be evaluated in a manner that is consistent with qual-
ity management systems and, in particular, the results of the evaluation
are to be fit for purpose.

6. If the same information is provided to different bodies, the uncertainties
these bodies calculate for the required results are to agree to within a
stipulated numerical accuracy.

7. Difficulties in handling sparse or scarce information are to be addressed
by making alternative, equally plausible assumptions, and re-evaluating
the uncertainty of the measurand to obtain knowledge of the variability
due to this source.

97



Software Support for Metrology Best Practice Guide No. 6

The intention of this guide has been to address these aims as far as reasonably
possible. Further, the two-phase approach advocated in Section 3.2 and followed
in the rest of this guide supports the first point from GUM, Clause 0.4. The
approach to multi-stage models recommended here supports the second point.
Finally, the mathematical formulation and the attitude of this guide supports
the third point, through the solution approaches of Section 5.

98



Uncertainty and Statistical Modelling

Bibliography

[1] Guide to the Expression of Uncertainty in Measurement. International
Organisation for Standardisation, Geneva, Switzerland, 1995. ISBN 92-67-
10188-9, Second Edition. 1, 3, 9, 13, 3.2, 4.2, 20, 24, 6.1, 65, 9.6, 81,
84

[2] AFNOR. Aid in the procedure for estimating and using uncertainly in
measurements and test results. Technical Report FD X 07-021, AFNOR,
2000. Informal English translation. 4.2.1

[3] V. Barnett. The ordering of multivariate data. J. R. Statist. Soc. A,
139:318, 1976. 62

[4] M. Basil and A. W. Jamieson. Uncertainty of complex systems by Monte
Carlo Simulation. In North Sea Flow Measurement Workshop, Gleneagles,
26-29 October 1998, 1998. 5.3.1

[5] Stephanie Bell. Measurement Good Practice Guide No. 11. A Beginner’s
Guide to Uncertainty of Measurement. Technical report, National Physical
Laboratory, 1999. 4.2

[6] P. Mac Berthouex and L. C. Brown. Statistics for Environmental Engineers.
CRC Press, USA, 1994. 65

[7] BIPM. Mutual recognition of national measurement standards and of cal-
ibration and measurement certificates issued by national metrology insti-
tutes. Technical report, Bureau International des Poids et Mesures, Sèvres,
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of uncertainties in dimensional metrology by Monte Carlo simulation: pro-
posal of a modular and visual software. Annals CIRP, 49:395–398, 2000.
5.3.1

[55] R. S. Scowen. QUICKERSORT, Algorithm 271. Comm. ACM, 8:669, 1965.
11

[56] C. E. Shannon and W. Weaver. The Mathematical Theory of Communica-
tion. University of Illinois, Urbana-Champagne, 1949. D.2

[57] B. R. L. Siebert. Discussion of methods for the assessment of uncertainties
in Monte Carlo particle transport calculations. In Advanced Mathematical
and Computational Tools in Metrology IV, pages 220–229, 2000. 37

102



Uncertainty and Statistical Modelling

[58] C. G. Small. A survey of multidimensional medians. International Statis-
tical Review, 58:263, 1990. 62

[59] C. R. Smith and W. T. Grandy, editors. Maximum-Entropy and Bayesian
methods in inverse problems, Dordrecht, 1985. Reidel. D.2

[60] P. I. Somlo and J. D. Hunter. Microwave Impedance Measurement. Peter
Peregrinus, London, 1985. 50

[61] B. N. Taylor and C. E. Kuyatt. Guidelines for evaluating and expressing
the uncertainty of NIST measurement results. Technical Report TN1297,
National Institute of Standards and Technology, 1994. 9, 10, 3.2, 7.8

[62] UKAS. The treatment of uncertainty in EMC measurements. Technical
Report NIS 81, United Kingdom Accreditation Service, 1994. 5.1.1, B

[63] UKAS. The expression of uncertainty and confidence in measurement.
Technical Report M 3003, United Kingdom Accreditation Service, 1997.
2.2

[64] P. A. G. van der Geest. An algorithm to generate samples of multi-variate
distributions with correlated marginals. Comput. Stat. Data Anal., 27:271–
289, 1998. 5.3.1, 52, 53

[65] K. Weise and W. Wöger. A Bayesian theory of measurement uncertainty.
Measurement Sci. Technol., 3:1–11, 1992. 13, 4.3.5, 81, D.2
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Appendix A

Some statistical concepts

Some statistical concepts used in this guide are reviewed. The concept of a
random variable is especially important. Inputs and outputs are (or are to
be regarded as) random variables. Some of the elementary theory of random
variables is pertinent to the subsequent considerations.

A.1 Discrete random variables

A discrete random variable X is a variable that can take only a finite number
of possible values. If X is the number of heads in an experiment consisting of
tossing three coins, X can take (only) the value 0, 1, 2 or 3.

A frequency function states the probabilities of occurrence of the possible
outcomes. For the coin-tossing experiment, the probability P (X) that the out-
come is X is given by

P (X = 0) =
1
8
,

P (X = 1) =
3
8
,

P (X = 2) =
3
8
,

P (X = 3) =
1
8
.

The probabilities can be deduced by enumerating all 2 × 2 × 2 = 8 possible
outcomes arising from the fact that each coin can only land in one of two equally
likely ways, or by using the binomial distribution [51, p36] that applies to the
analysis of such probability problems.

The distribution function G(x) gives the probability that a random variable
takes a value no greater than a specified value:

G(x) = P (X ≤ x), −∞ < x < ∞.

For the coin-tossing experiment,

G(x < 0) = 0,

G(0 ≤ x < 1) =
1
8
,
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G(1 ≤ x < 2) =
1
2
,

G(2 ≤ x < 3) =
7
8
,

G(3 ≤ x) = 1.

The distribution function varies from zero to one throughout its range, never
decreasing.

The probability that X lies in an interval [a, b] is

P (a ≤ X ≤ b) = G(b)−G(a).

Two important statistics associated with a discrete random variable are its
mean and standard deviation.

Let x1, x2, . . . denote the possible values of X and p(x) the frequency function
of X. The expected value or mean µ of a discrete random variable X with
frequency function p(x) is

µ =
∑

i

xip(xi).

It is a measure of the location of X.
The standard deviation σ of a discrete random variable X with frequency

function p(x) is the square root of the variance.

var(X) = σ2 =
∑

i

(xi − µ)2p(xi).

It is a measure of the spread or dispersion of X.

A.2 Continuous random variables

A continuous random variable X is a variable that can take any value within a
certain interval. For a machine capable of weighing any person up to 150 kg,
the recorded weight x can take any value in the interval 0 kg to 150 kg.

For a continuous random variable X, the counterpart of the frequency func-
tion (for a discrete random variable) is the probability density function (pdf)
g(x). This function has the property that the probability that X lies between
a and b is

P (a < X < b) =
∫ b

a

g(x)dx.

Since a random variable X must take some value, g(x) has the property that∫ ∞

∞
g(x)dx = 1.

The uniform density function is a density function that describes the fact
that X is equally likely to lie anywhere in an interval [a, b]:

g(x) =
{

1
b−a , a ≤ x ≤ b,

0, otherwise.

105



Software Support for Metrology Best Practice Guide No. 6

The distribution function G(x) gives the probability that a random variable
takes a value no greater than a specified value, and is defined as for a discrete
random variable:

G(x) = P (X ≤ x), −∞ < x < ∞.

The distribution function can be expressed in terms of the probability density
function as

G(x) =
∫ x

−∞
g(v)dv.

The mean of a continuous random variable X with probability density func-
tion g(x) is

E(X) =
∫ ∞

−∞
xg(x)dx.

It is often denoted by µ.
The variance of a continuous random variable X with density function g(x)

and expected value µ = E(X) is

var(X) =
∫ ∞

−∞
(x− µ)2g(x)dx.

The variance is often denoted by σ2 and its square root is the standard deviation
σ.

A.3 Coverage interval

A coverage interval (or statistical coverage interval) is an interval for which it
can be stated with a given level of probability that it contains at least a specified
proportion of the population [41].

Given the pdf g(x), with distribution function G(x), of a random variable
X, the (100p)th percentile is the value xp such that

G(xp) =
∫ xp

−∞
g(v)dv = p,

i.e., (100p)% of the pdf lies to the left of xp.
A 95% coverage interval is therefore [x0.025, x0.975].
The inverse distribution G−1(p) permits the value of X corresponding to a

specified percentile to be obtained:

xp = G−1(p).

Example 24 A coverage interval for a Gaussian probability density function

A 95% coverage interval for a Gaussian pdf with zero mean and unit standard
deviation is [−2.0, 2.0].

Example 25 A coverage interval for a uniform probability density function

A 95% coverage interval for a uniform pdf with zero mean and unit standard
deviation is [−1.6, 1.6].
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A.4 95% versus k = 2

The use of a coverage probability of 95% has been adopted by many nations in
quoting measurement results. There are two sides to the coin. In an interlabo-
ratory comparison of measurement standards, an individual laboratory may lie
more than two standard deviations from the mean (corresponding in a Gaussian
world to an endpoint of a 95% coverage interval). There is a stigma attached
to such a situation even though by chance alone such an “event” is likely to
happen once in twenty.

Thus, there will be sensitivities at international level in dealing with com-
parisons in this regard (and also of course at all levels of the metrological chain).
Consideration could therefore be given to the use of a coverage interval corre-
sponding to a greater level of probability, e.g., 99% or 99.9%. Fewer laboratories
or results would consequently be perceived as exceptional.

A similar interpretation arises within a calibration laboratory. Suppose that
such a laboratory repeatedly makes calibrations for its customers, quoting real-
istic coverage intervals for the calibration results. On average one out of twenty
of the provided calibration results will be outside the quoted coverage interval
for the value of the measurand, on the basis of chance alone.

A major objection to providing a coverage interval corresponding to a high
level of probability is that a sufficiently detailed knowledge of the tails of the
distribution of values that can be attributed to the measurand is required. Such
information is much harder to obtain, necessitating an appreciably larger num-
ber of measurements, for example, to quantify the distributions of the model
inputs. Obtaining such information might be justified in safety-critical applica-
tions, where “risk of failure” has severe consequences.

The use of the 95% level of probability can be regarded as a matter of
convenience. It is not perfect, but criticism could be directed at any level for
reasons that are either general or specific to that level. A very large number
of practitioners employ it, and the inertia that has been generated would imply
that it should only be changed if there were exceptional reasons for doing so.

There is another important consideration relating to the choice of a 95%
coverage interval.

A culture exists in certain metrological quarters in which, when determining
or interpreting coverage intervals, “95%” is regarded as identical to “k = 2”.1

However, the use of k = 2 in isolation imparts no knowledge or assumption re-
lating to the underlying statistical distribution. It might be Gaussian. It might
be something completely different. As a consequence, different statements, each
containing an uncertainty quoted in this way, cannot readily be compared be-
cause they might be associated with different levels of probability. In practice,
quoting k = 2 (alone) would often be interpreted as relating to a Gaussian dis-
tribution and hence be equivalent to the 95% level of probability. This is a big
assumption. The converse of this statement is that there is a great temptation
simply to evaluate the standard uncertainty (standard deviation) of a measure-
ment result (in some way) and double it in order to obtain a k = 2 value, which
indeed it is, but at what price? The evaluation of uncertainties, particularly the
Type B contributions (obtained by non-statistical techniques [1]), is far from

1The value of k, in the language of the GUM, is the coverage factor. It is used to scale the
standard deviation of the pdf of the output, to obtain a coverage interval at the stated level
of probability.
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an easy task. However, whenever an uncertainty evaluation is carried out, the
practitioners involved should make and record their knowledge and assertions
concerning the statistical distributions (hypothesized if necessary) associated
with all the inputs. Then, armed with a measurement model, which the GUM
mandates, the propagation of these distributions through the model would im-
ply a distribution for the measurement result, from which a 95% interval can be
obtained. Mainstream GUM assumes the validity of the Central Limit Theorem
and the linearizability of the model, the implication of which is that the mea-
surement result follows a Gaussian or a t-distribution, the latter applying if the
number of degrees of freedom associated with the measurement result is finite.
Even if Mainstream GUM is followed and the limitations inherent in its use for
the current purposes are defensible, the coverage factor will differ from two if
the number of degrees of freedom is not large. If, as is permitted by the GUM
(Clause G.1.5), other analytical or numerical methods are used, a 95% coverage
interval can be obtained, as implied above (using Monte Carlo Simulation, for
example), free of these limitations. When these other approaches are employed,
there is no concept of a coverage factor. It will always be necessary to make some
assertions about the uncertainties associated with the influence factors, but that
is the metrologists task. To throw ones hands in the air and state no knowledge
of certain contributions is unhelpful. The metrologist needs to make statements
about what he believes, and those statements provide the basis for the analysis,
until better statements become available. After all, he is best-placed to do this.
If everything is recorded, the quoted uncertainty can be defended in that light.
Arguably, the worst-case scenario is when the metrologist knows nothing about
the nature of an uncertainty contribution than an asserted upper limit on the
uncertainty of the corresponding input. In this situation the Principle of Max-
imum Entropy, as advocated by the Bayesians [66, 65], would imply that the
best estimate of the underlying statistical distribution is uniform, with bounds
specified by the limit. The Frequentists would have nothing to offer because no
measured data is available! See Section D.
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Appendix B

A discussion on modelling

In order to provide an objective evaluation of uncertainty, a model, despite the
possibly great difficulties in obtaining it, is required.

[GUM Clause 8, Step 1] Express mathematically the relationship
between the measurand Y and the input quantities Xi on which Y
depends: Y = f(X1, X2, . . . , XN ). The function f should contain
every quantity, including all corrections and correction factors, that
can contribute a significant component of uncertainty to the result
of measurement.

The GUM thus mandates a model, which in the simplest case might be a
straightforward mathematical formula, and in a hard case a complicated proce-
dure involving software calculations, experimental rigs, etc.

In terms of inputs X, outputs (results of measurement) Y and a model f ,
then, consistent with the GUM, Y = f(X). Also, evidently, once the model is in
place, the uncertainties in X can be propagated through the model to become
uncertainties in Y. Alternatively and more generally, the pdf’s of X can be
propagated through the model to yield the (possibly multidimensional) pdf of
Y.

These considerations are at the heart of uncertainty evaluation.
If no model is available, even if its inputs and the pdf’s for these inputs

have been provided, it is not possible to work with uncertainties in this way or,
arguably, in any way. The United Kingdom Accreditation Service (UKAS) guid-
ance [62] on obtaining uncertainties in the area of electromagnetic compatibility
(EMC) is not based on the concept of a model. As a consequence, it is difficult
to determine the extent to which the guidance is adequate, and to extend the
presented considerations and examples to cover other circumstances, especially
to account for further inputs, is not feasible. Of course, in any treatment of
uncertainties, a model is implicitly assumed, even if not formally provided.

Additionally, as arise in a number of areas of metrology, the EMC guide
[62] considers the effects of nonlinear changes of variable, specifically the need
to work with linear variables and logarithmic variables, as a consequence of
measurements expressed in decibel units. Such transformations arise in a num-
ber of areas of metrology. The handling of the uncertainties that “propagate”
through these transformations is handled in a heuristic manner. The approach
is adequate when the uncertainties are sufficiently small. However, in the EMC
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area and in some other branches of metrology, this is not always the case. Not
only can such a heuristic approach give rise to invalid results for the propagated
uncertainty, it can also yields anomalies resulting from the fact that the propa-
gation of uncertainties associated with a symmetric pdf such as a Gaussian or a
uniform pdf through a nonlinear transformation yields an asymmetric distribu-
tion. The extent of the asymmetry is exaggerated by large input uncertainties.

UKAS has recognised the problems associated with the current guidance
document and is working towards a revision that will incorporate a number
of the considerations included in this best-practice guide. These considerations
include a model-based approach, handling changes of variables in a valid manner,
the use of Monte Carlo Simulation to provide output uncertainties, and the use
of MCS to validate Mainstream GUM.

A model can be viewed as transforming the knowledge of what has been
measured or obtained from calibrations, manufacturers’ specifications, etc. into
knowledge of the required measurement results. It is difficult to consider the
errors or uncertainties in this process without this starting point. It is accepted
that there may well be difficulties in developing models in some instances. How-
ever, their development and recording, even initially in a simple way, provides
a basis for review and subsequent improvement.

If, as is permitted by the GUM (Clause G.1.5), other analytical or numerical
methods are used, a 95% coverage interval can be obtained, as implied above
(using Monte Carlo Simulation, for example), free of these limitations. When
these other approaches are employed, there is no concept of a coverage factor.

In this appendix, consideration is given to the relationship of the GUM
(input-output) model to classical statistical modelling.

There is much discussion in many quarters of different attitudes to uncer-
tainty evaluation. One attitude involves the formal definition of uncertainty
of measurement (GUM Clause 2.2.3 and above) and the other in terms of the
concepts of error and true value. These alternative concepts are stated in GUM
Clause 2.2.4 as the following characterizations of uncertainty of measurement:

1. a measure of the possible error in the estimated value of the measurand
as provided by the result of a measurement;

2. an estimate characterizing the range of values within which the true value
of a measurand lies (VIM, first edition, 1984, entry 3.09).

A second edition of VIM has been published [40]. That edition is currently
being revised by the JCGM.

The extent and ferocity of discussion on matters such as the existence of a
true value almost reaches religious fervour and is such that it provides a major
inhibiting influence on progress with uncertainty concepts. This best-practice
guide does not subscribe to the view that the attitudes are mutually unten-
able. Indeed, in some circumstances an analysis can be more straightforward
using the concepts of GUM Clause 2.2.3 and in others the use of Clause 2.2.4
confers advantage. It is essential to recognize that, although philosophically
the approaches are quite different, whichever concept is adopted an uncertainty
component is always evaluated using the same data and related information
(GUM Clause 2.2). Indeed, in Clause E.5 of the GUM a detailed comparison
of the alternative views of uncertainty clearly reconciles the approaches. In
particular, GUM Clause E.5.3 states
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. . . it makes no difference in the calculations if a standard uncer-
tainty is viewed as a measure of the probability distribution of an
input quantity or as a measure of the dispersion of the probability
distribution of the error of that quantity.

B.1 Example to illustrate the two approaches

Consider the measurement of two nominally-identical lengths under suitably-
controlled conditions using a steel rule. Suppose there are two contributions to
the uncertainty of measurement due to:

1. Imperfection in the manufacture and calibration of the rule,

2. Operator effect in positioning and reading the scale.

Let the true lengths be denoted by L1 and L2. Let the measured lengths be
denoted by `1 and `2. Then the measurements may be modelled by

`1 = L1 + e0 + e1,

`2 = L2 + e0 + e2,

where e0 is the imperfection error in the steel rule when measuring lengths
close to those of concern, and e1 and e2 are the operator errors in making the
measurements. The errors in the measured lengths are therefore

`1 − L1 = e0 + e1,

`2 − L2 = e0 + e2.

Make the reasonable assumption that the errors e0, e1 and e2 are independent.
Then, if σ0 denotes the standard deviation of e0 and σ that of e1 and e2,

var(`1 − L1) = σ2
0 + σ2,

var(`2 − L2) = σ2
0 + σ2,

cov(`1 − L1, `2 − L2) = σ2
0 .

Suppose that it is required to evaluate the difference in the measured lengths
and its uncertainty. From the above equations,

`1 − `2 = (L1 − L2) + (e1 − e2)

and hence, since e1 and e2 are independent,

var(`1 − `2) = var(e1 − e2) = var(e1) + var(e2) = 2σ2.

As expected, the uncertainty in the steel rule does not enter this result.
Compare the above with the Mainstream GUM approach:
Inputs. L1 and L2.
Model. Y = L1 − L2.
Input values. `1 and `2.
Input uncertainties.

u(`1) = u(`2) =
(
σ2

0 + σ2
)1/2

, u(`1, `2) = σ2
0 .
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Partial derivatives of model (evaluated at the input values)

∂Y/∂L1 = 1, ∂Y/∂L2 = −1.

Output uncertainty using GUM Formula (13)

u2
c(y) = (∂Y/∂L1)

2
u2(`1) + (∂Y/∂L2)

2
u2(`2) + 2 (∂Y/∂L1) (∂Y/∂L2) u(`1, `2)

= (1)2(σ2
0 + σ2) + (−1)2(σ2

0 + σ2) + 2(1)(−1)σ2
0

= 2σ2
0 .
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Appendix C

The use of software for
algebraic differentiation

Sensitivity coefficients can be difficult to determine by hand for models that are
complicated. The process by which they are conventionally determined is given
in Section 5.5. The partial derivatives required can in principle be obtained using
one of the software systems available for determining derivatives automatically
by applying the rules of algebraic differentiation.

If such a system is used, care needs to be taken that the mathematical
expressions generated are stable with respect to their evaluation at the estimates
of the input quantities. For instance, suppose that (part of) a model is

Y = (X1 − C)4,

where C is a specified constant. An automatic system might involve expansions
such as Taylor series to generate the partial derivative of Y in the form

∂Y

∂X1
= 4X3

1 − 12X2
1C + 12X1C

2 − 4C3, (C.1)

and perhaps not contain a facility to generate directly or simplify this expression
to the mathematically equivalent form

∂Y

∂X1
= 4(X1 − C)3, (C.2)

that would typically be obtained manually.
Suppose the estimate of X1 is x1 = 10.1 and C = 9.9. The value c1 of the

resulting sensitivity coefficient is 4(x1 − C)3 = 0.032, correct to two significant
figures. Both formulae (C.1) and (C.2) deliver this value to this number of
figures. The second, more compact, form is, however, much to be preferred.
The reason is that Formula (C.2) suffers negligible loss of numerical precision
when it is used to evaluate c1, whereas, in contrast, Formula (C.1) loses figures
in forming this value. To see why this the case, consider the contributions to
the expression, evaluated and displayed here to a constant number of decimal
places (corresponding to seven significant figures in the contribution of greatest
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magnitude):
4x3

1 = 4121.204,
−12x2

1C = −12118.79,
12x1C

2 = 11878.81,
−4C3 = −3881.196.

The sum of these values constitutes the value of c1. To the numerical accu-
racy held, this value is 0.028, compared with the correct value of 0.032. The
important point is that a value of order 10−2 has been obtained by the sum of
positive and negative values of magnitude up to order 104. Almost inevitably,
a loss of some six figures of numerical precision has resulted, as a consequence
of subtractive cancellation.

For different values of x1 and C or in other situations the loss of figures could
be greater or less. The concerning matter is that this loss has resulted from such
a simple model. The effects in the case of a sophisticated model or a multi-stage
model could well be compounded, with the consequence that there are dangers
that the sensitivity coefficients formed in this way will be insufficiently accurate.
Therefore, care must be taken in using sensitivity coefficients that are evaluated
from the expressions provided by some software for algebraic differentiation.
Such a system, if used, should evidently be chosen with care. One criterion
in making a choice is whether the system offers comprehensive facilities for
carrying out algebraic simplification, thus ameliorating the danger of loss of
figures. Even then, some form of validation should be applied to the numerical
values so obtained.1

Some systems operate in a different way. They “differentiate code” rather
than differentiate a formula. Acceptable results can be produced by the user by
carefully constructing the code that defines the function.

1Numerical analysis issues such as that discussed here will be addressed as part of SSf M2.
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Appendix D

Frequentist and Bayesian
attitudes

D.1 Discussion on Frequentist and Bayesian at-
titudes

There are strongly-held views concerning whether statistical analysis in gen-
eral or uncertainty evaluation in particular should be carried out according to
Frequentist or Bayesian attitudes.

The Frequentist would assume that the value of the measurand is an un-
known constant and that the measurement result is a random variable. The
Bayesian would regard the value of the measurand as a random variable hav-
ing a pdf derived from existing knowledge and the result of measurement as a
known quantity [44].

These views can result in such divergent opinions that their discussion, al-
though of considerable philosophical interest, militates against the practical
need to provide useful uncertainty evaluations.

The attitude of this guide is to adopt the attitude that there is no “right
answer”. However, it is only reasonable to adopt the view that appropriate use
should be made of the information available. In this regard this guide takes
predominantly a Bayesian attitude. A Bayesian would use available knowledge
to make judgements, often subjective to some extent, of the pdf’s of the model
inputs. The practitioner, with support from the expert metrologist as necessary,
would also wish to employ previous information, e.g., calibration information
or measurements of similar artefacts. Where (some of) the information seems
suspect, as a result of common sense, experience or statistical analysis, further
information should be sought if it is economical to do so.

In several instances the results that would finally be obtained by Frequen-
tists and Bayesians would be identical or at least similar. Consider the repeated
measurement of items manufactured under nominally identical conditions. The
Frequentist would analyze the sample of measurements to estimate the “popu-
lation” mean and standard deviation of the manufactured items, and perhaps
other parameters. The Bayesian would devise a prior distribution, based on his
knowledge of the manufacturing process. He would “update” the information
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contained within it in order to provide hopefully more reliable estimates of the
parameters. In a case where there was no usable information available initially,
the Bayesian would employ the so-called “non-informative prior”. This prior
effectively corresponds to the minimal knowledge that in the absence of infor-
mation any measurement is equally possible. The parameter values so obtained
can be identical in this case to those of the Frequentist. Any additional knowl-
edge would help to give a better prior and hopefully a more valid result in that
it would depend on available application-dependent information.

D.2 The Principle of Maximum Entropy

“. . . the virtue of wise decisions by taking into account all possibili-
ties, i.e., by not presuming more information than we possess.” [43]

The Principle of Maximum Entropy (PME) [42] is a concept that can valu-
ably be employed to enable maximum use to be made of available information,
whilst at the same time avoiding the introduction of unacceptable bias in the
result obtained. Two internationally respected experts in measurement uncer-
tainty [65] state that predictions based on the results of Bayesian statistics and
this principle turned out to be so successful in many fields of science [59], partic-
ularly in thermodynamics and quantum mechanics, that experience dictates no
reason for not also using the principle in a theory of measurement uncertainty.

Bayesian statistics have been labelled “subjective”, but that is the intended
nature of the approach. One builds in knowledge based on experience and other
information to obtain an improved solution. However, if the same knowledge is
available to more than one person, it would be entirely reasonable to ask that
they drew the same conclusion. The application of PME was proposed [66] in
the field of uncertainty evaluation in order to achieve this objective.

To illustrate the principle, consider a problem [66] in which a single unknown
systematic deviation X1 is present in an measurement process. Suppose that
all possible values for this deviation lie within an interval [−L, L], after the
observed measurement result was corrected as carefully as possible for a known
constant value. The value supplied for L is a subjective estimate based on
known properties of the measurement process, including the model inputs. In
principle, the value of L could be improved by aggregating in a suitable manner
the estimates of several experienced people. Let g1(x1) denote the pdf of X1.
Although it is unknown, g1(x1) will of course satisfy the normalizing condition∫ L

−L

g1(x1)dx1 = 1. (D.1)

Suppose that from the properties of the measurement process it can be asserted
that on average the systematic deviation is expected to be zero. A second
condition on g1(x1) is therefore∫ L

−L

x1g1(x1)dx1 = 0. (D.2)

Suppose an estimate u of the standard deviation of the possible values for the
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systematic deviation is available. Then,∫ L

−L

x2
1g1(x1)dx1 = u2. (D.3)

Of course, u2 ≤ L2. Suppose that no further information is available.
There are of course infinitely many pdf’s for which the above three conditions

hold. However, PME can be used to select a pdf from these. The pdf so obtained
will have the property that it will be unbiased in that nothing more is implicitly
assumed.

The use [42] of Shannon’s theory of information [56] achieves this goal. Any
given pdf represents some lack of knowledge of the quantity under consideration.
This lack of knowledge can be quantified by a number,

S = −
∫

g1(x) log g1(x)dx,

called the (information) entropy [56] of that pdf, The least-biased “probability
assignment” is that which maximizes S subject to the conditions (D.1)-(D.3).
Any other pdf that satisfies these conditions has a smaller value of S, thus
introducing a prejudice that might contradict the missing information.

This formulation can fully be treated mathematically [66] and provides the
required pdf. The “shape” of the pdf depends on the quotient u/L. If u/L
is smaller than 1/

√
3, the pdf is bell-shaped. If u/L is larger than 1/

√
3, the

pdf is U-shaped. Between these possibilities, when u/L = 1/
√

3, the pdf is the
uniform pdf.

It can also be determined that if no information is available about the stan-
dard deviation u, and S is maximized with respect to conditions (D.1) and (D.2)
only, the resulting pdf is the uniform pdf.

It is evident that the more information there is available the better the
required pdf can be estimated. The services of a mathematician or a statistician
might be required for this purpose. However, in a competitive environment, or
simply when it is required to state the most realistic (and hopefully the smallest)
and defensible measurement uncertainties, such a treatment might be considered
appropriate.

One approach to a range of such problems might be to categorize the com-
monest types of problem, such as those above, viz., when

1. Conditions (D.1) and (D.2) hold,

2. Conditions (D.1)-(D.3) hold.

There would other such conditions in other circumstances. “Solutions” to
this range of problems could be determined, almost certainly in the form of
algorithms that took as input the defining parameters (such as L and u above)
and returned the corresponding quantified pdf. This pdf would then form one
of the inputs to an MCS solution or to what other method might be applied.1

In summary, it is regarded as scientifically flawed to discard credible infor-
mation, unless it can be shown that doing so will have no influence on the results
required to the accuracy needed.

1Such considerations would seem valuable for a future SSf M programme and thence to
feed into a subsequent release of this guide.
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In particular, if knowledge of the pdf’s of the inputs is available, perhaps
deduced as above using PME, these pdf’s, which can be regarded as providing
prior information in a Bayesian sense, should not simply be replaced by a mean
and standard deviation, unless doing so can be shown to have the mentioned
negligible effect. If other information is available, such as above, or conditions on
the results of measurement or on nuisance parameters,2 this information should
be incorporated in order to render the solution physically more meaningful, and
the uncertainties more realistic.

There are some further cases that can be dealt with reasonably straightfor-
wardly:

1. If a series of repeat measurements is taken and no knowledge is available
other than the data itself, it can be inferred from the PME that a Gaussian
pdf with mean and standard deviation obtained from the measurements
should be assigned to the parameter estimated by the measurements.

2. If the measurements are as in 1 above, but are known to contain errors that
can be considered as drawn from a Gaussian distribution, it can be inferred
from the PME that a Student’s t pdf with mean, standard deviation and
number of degrees of freedom obtained from the measurements should be
assigned.

3. If the situation is as in 2, but that additionally a prior Gaussian pdf is
available from historical information, it can be inferred from the PME that
taking both sources of information into account, an improved Gaussian pdf
can be obtained [49].3 If xP is the estimate of the measurand based on
prior information (only) and xM that on the measurements (without in-
cluding prior information), and uP and uM are the corresponding standard
deviations, the best estimate [49] of the measurand using both sources of
information is

x =
(

1
1 + γ2

)
xP +

(
γ2

1 + γ2

)
xM ,

where
γ = uP /uM ,

with standard deviation u(x) given by

1
u2(x)

=
1

u2
P

+
1

u2
M

.

Clause 4.3.8 of the GUM provides the pdf when limits plus a single mea-
surement are available.

Example 26 The application of the Principle of Maximum Entropy to deter-
mining the probability density function when lower and upper bounds only are
available

2Nuisance parameters are additional variables introduced as part of the modelling process
to help build a realistic model. They would not by their nature constitute measurement results,
but their values and their uncertainties might be of interest as part of model development or
enhancement.

3 Check whether the pdf is Gaussian or Student’s-t.
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Consider that lower and upper bounds a and b for the input quantity Xi are
available. If no further information is available the PME would yield (a+b)/2 as
the best estimate of Xi and {(b−a)/12}1/2 as the best estimate of the standard
deviation of Xi. It would also yield the pdf of Xi as the uniform distribution
with limits a and b.

Example 27 The application of the Principle of Maximum Entropy to deter-
mining the probability density function when lower and upper bounds and a
single measurement are available

Suppose that as well as limits a and b, an estimate xi of Xi is available. Unless
xi = (a + b)/2, i.e., it lies at the centre of the interval (a, b), the pdf would not
be uniform as before. Let λ be the root of the equation

(e−λa − e−λb)C(λ)− λ = 0,

where
C(λ)−1 = (xi − a)e−λa + (b− xi)e−λb.

The PME yields [1, Clause 4.3.8] the pdf of Xi as

C(λ)e−λXi .

All circumstances should be treated on their merits. Consider a large number
of repeat measurements. Suppose that the manner in which they are distributed
(as seen by a histogram of their values, e.g.) indicates clearly that their be-
haviour is non-Gaussian, e.g., a strong asymmetry, “long tails” or bi-modality.
Then, the data itself, if judged to be representative, is indicating that the blind
application of the PME is inappropriate in this circumstance. Since, for large
samples, the principle of the bootstrap is appropriate, it can legitimately be
applied here.
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Appendix E

Nonlinear sensitivity
coefficients

Nonlinear sensitivity coefficients offer a possible counterpart of the sensitivity
coefficients that are a major component of the Mainstream GUM approach.
They apply quite generally, i.e., to any model and any input pdf’s, regardless
of the extent of model nonlinearity or complexity or the nature of the pdf’s.

With a linear model the sensitivity coefficients “reproduce” linear effects.
For a nonlinear model, the sensitivity coefficients provide first-order informa-
tion. With MCS there is no immediate counterpart of a sensitivity coefficient
since MCS operates in terms of the actual nonlinear model rather than a lin-
earized counterpart. Therefore, those practitioners accustomed to the “GUM
culture” may find the absence of sensitivity coefficients disconcerting. There is
no counterpart of a (constant) coefficient in the general setting. It is possible and
very straightforward, however, to adapt MCS such that it provides information
that in a sense constitutes a nonlinear counterpart of a sensitivity coefficient.
Consider holding all inputs but one, that of concern, at their nominal values.
In this setting the model effectively becomes one having a single input quantity.
Sample values from this input and provide the pdf of the output quantity with
respect to this input quantity. This pdf provides a distributional statement of
uncertainty. In the case of complicated models this approach is already used by
many metrologists as a practical alternative to the tedious analysis required to
provide sensitivity coefficients [36].

The quotient of the standard deviation of this pdf to that of the relevant
input quantity can be taken as a “nonlinear” sensitivity coefficient.
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