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Abstract

The paper discusses a class of stochastic models for evaluating the optimal cali-

bration interval in measuring instruments devoted to assess the quality levels of

an industrial processes. The model is based on the assumption that the calibration

condition of the instrument can be traced by monitoring the drift of an observable

parameter. Various stochastic drift models are introduced and compared. A pre-

liminary validation of the model is reported, based on experimental data collected

on a class of instruments.

Key words: Stochastic process, drift models, calibration intervals, process con-

trol.

1 Introduction

The assessment of the correct calibration conditions of measuring instruments devoted
to monitoring the quality levels of an industrial process is a very crucial problem, partic-
ularly for a high technology company [1] whose quality requirements are more stringent.

The calibration of an instruments is monitored by performing periodic tests on stan-
dardized and certi�ed specimens. Since the calibration tests require to suspend the
production process, the estimation of the proper test interval is an important speci�-
cation in any quality assurance programs. However, there is a surprising lack of well
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established and recommended methods in the international standards [2, 1]. The meth-
ods surveyed in [1] are mostly of statistical nature and can be correctly applied to large
inventories of instruments, only.

The paper proposes to resort to a stochastic model that can be tailored to a single
equipment. The method consists in modeling the drift of an observable parameter of
the instrument, whose possible variation is bounded by a prede�ned tolerance level, by
means of a stochastic process in time. The calibration interval is �nally related to the
distribution function of the �rst passage time of the drift process across the assigned
tolerance threshold.

2 Stochastic Drift Models

The calibration condition of a given instrument can be determined by measuring the
deviation of an observable parameter with respect to a preassigned value assumed as
the correct one. The measured deviation undergoes a drift that can be represented by a
stochastic model [3].

Let z(t) be the value of the measured parameter at time t. The drift in the parameter
value is supposed to be caused by a sequence of discrete random shocks whose amplitude
is a stochastic variable x with known cumulative distribution function (cdf) Fx(x) [4].
z(t) is related to the sequence of shocks by some suitable functional. Di�erent hypotheses
on the functional dependence of the total drift on the single shock give rise to di�erent
stochastic models. Let a be a simmetric bilateral tolerance threshold on the measured
parameter z(t). The instruments is considered out of tolerance when the total deviation
z(t) exceeds the level + a or � a.

Let T be the time at which the drift process reaches the value � a for the �rst time.

T = min f t : jz(t)j < a g (1)

T is a random variable with cdf HT (t) = PrfT � tg and survival function HT (t) =
1�HT (t).

Given a con�dence level � (e.g. � = 0:95) the calibration interval � is de�ned by

HT (�) = 1� � (2)

We examine four cases by combining two models on the nature of the accumulation
of the drift with two models on the sequence of the shocks. Speci�ally, the drift can be
without memory (single shock) or additive, and the sequence of the successive shocks
can be equispaced or random.

The drift process is without memory if the subsequent shocks are uncorrelated and
do not have any cumulative e�ect. Hence, the total drift z(t) is equal to the value of
the last shock, and the instrument goes out of tolerance when a single shock exceeds the
threshold � a. In the additive model the e�ect of the subsequent shocks add and the
total drif z(t) is equal to the sum of the shock amplitudes. The threshold is reached
when the sum of the successive shock amplitudes exceeds the threshold � a.

The object of the subsequent analysis is to derive the survival function HT (t) in the
di�erent cases, so that the calibration interval � can be evaluated from (2).
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2.1 Equispaced shocks

The parameter x is measured at equispaced intervals � t.

Non-cumulative drift

The measured deviations are uncorrelated. Hence, z(k�t) = xk and the out of tolerance
condition is reached only when a single deviation x occurs with amplitude greater than
� a. The probability of surviving the �rst k intervals is given by:

HT (k�t) = PrfT > k�tg = Prfjxkj < a; jxk�1j < a; : : : ; jx1j < ag (3)

If the deviations are independent with the same distribution, Equation (3) becomes:

HT (k�t) = [Fx(�a; a)]
k = [Fx(a) � Fx(�a)]

k (4)

and HT (0) = 1

Additive drift

Let us introduce the random variable sk representing the cumulative drift up to the
k-test:

z(k�t) = sk =
kX

i=1

xi (5)

With the above notation:

HT (k�t) = Prfjskj < a; jsk�1j < a; : : : ; js1j < ag (6)

2.2 Random Shocks

The drift process is caused by shocks occurring randomly in time according to a point
process N(t). The amplitude of each shock is a random variable x of cfd Fx(x). The
process is completely speci�ed if the probability Pk(t) of having k shocks at time t is
known.

If the sequence of the random shocks in time is supposed to occur according to a
Poisson process of rate �, we have:

Pk(t) = PrfN(t) = kg = e�� t
(� t)k

k!
(7)

The survival probability becomes, in this case:

HT (t) =
1X

k=0

HT (t j k) � PrfN(t) = kg =
1X

k=0

HT (t j k) � e
�� t

(� t)k

k!
(8)

Where HT (t j k) is the survival probability at time t conditioned on the occurrence of k
shocks in 0� t, and is derived from Equation (3) for the non-cumulative drift and from
Equation (6) for the additive drift.

An interesting result derived from [4] is that under the only hypothesis that x is
positive, the survival probability HT (t) is Increasing Hazard Rate in Average (IHRA).
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3 Experimental Results

In order to have a preliminary validation, we have collected a sample of test data cu-
mulated over three similar equipments whose calibration can be de�ned by observing
the deviation of a single parameter. A test of the calibration condition is performed
every work shift (three times a day). The test consists in measuring the deviation of
the actual observable parameter with respect to the nominal value and reporting the
measured deviation on a control chart. When the operator �nds the instrument out of
the calibration range, a suitable adjustment procedure is initiated.

Since the considered parameter is a deviation, the correct value should be 0, and
the calibration threshold is assumed simmetric and bilateral. We have derived from the
control charts of each instrument the measured deviations over a given period of time (2
months).

We have submitted the sample of the deviations to a spectral analysis . The result
of this analysis is that the deviations have a white spectrum showing that there is no
correlation between successive measures. Therefore, the successive measured values are
not correlated and the non-cumulative drift model at equispaced time intervals seems
the more appropriate.

The collected deviations have been �tted by a best-�t gaussian density (with mean
value � = �0:55 and standard deviation � = 1:1).

From the control charts we have derived the observed time between two successive
out of tolerance conditions (measured in number of work shifts), and the observed em-
pirical survival function has been �tted with the model of Equation (3) using the derived
gaussian distribution as the cdf of each single shock. The agreement resulted to be
satisfactorily accurate.

Finally, we have calculated the optimal calibration interval � as the time at which
an assigned percentile of the survival function of the �rst passage time reaches the pre-
assigned tolerance level with three increasing values of the con�dence � (e.g. � =
0:9; 0:95; 0:99).
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