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ABSTRACT 
 
Investigators attempting to find analysis techniques suitable for calibration interval analysis will discover that 
virtually nothing useful can be found in the reliability literature.  This is primarily due to the fact that the various 
methodologies developed for "classical" reliability analysis are built around sampling plans in which unit failure 
times are known and recorded. 
 
Unfortunately, calibration history data, on which calibration intervals are based, do not provide precise time to 
failure (i.e., out-of-tolerance) information.  Consequently, methods are required which extend beyond classical 
reliability analysis techniques.  This paper offers such an extension by providing a maximum likelihood estimation 
technique for the analysis of data characterized by unknown failure times.  We label this data classification as Type 
III censored data, and note that it applies to calibration history data.  The estimation method is illustrated using the 
exponential reliability function, Its extension to other distributions is fairly straightforward.  Also reported is an 
approximate method which has yielded good results for the cases studied to date. 
 

1.0 INTRODUCTION 
 
Many facilities in the aerospace and defense industries attempt to arrive at test equipment calibration intervals 
applicable to homogeneous groups (e.g., model-manufacturer populations) of equipment.  Most of us who have 
grappled with the problem agree that such intervals should be based on calibration history data taken over time.  
Approaches which follow this philosophy have as their cornerstone the surmise that the out-of-tolerance percentage 
of instrument populations increases with time elapsed since calibration.  To illustrate this point, imagine that a group 
of like instruments, all of which are in-tolerance, are dispatched into ordinary service at some time t = 0.  Imagine 
further that we could monitor the instruments at some time t1 > 0 without disturbing the group in any way.  We would 
expect, based on the physics of calibrateable attribute stabilities, that, for t1 sufficiently large, some of the items 
would be found out-of-tolerance.  Moreover, if the group could be re-examined at some time t2 > t1, we would expect 
still more items to be found out-of-tolerance, and so on. 
 
From the foregoing, we might reasonable hope to discover the relationship between out-of-tolerance (or in-tolerance) 
percentage and time since calibration for a homogeneous group of instruments in a given usage and environmental 
setting by successive recalibrations, performed at various points in time.  Specifically, by calibrating samples of 
items taken on the group at times t1, t2, t3 , ... , tm, and obtaining out-of-tolerance percentages for these samples, we 
might be able to establish a functional or graphic relationship between group out-of-tolerance percentages and time 
elapsed since calibration.  Having determined this relationship, we could then adjust the group's calibration interval 
to correspond to a measurement reliability target, or "in-tolerance" rate, commensurate with measurement assurance 
requirements.  An interval established in this manner would be optimal in the sense that its determination is based on 
the most relevant information available and that its value is directly linked to reliability objectives. 
 
The reliability literature abounds with techniques for determining such relationships for cases where equipment are 
continuously monitored to record unit failure times.  These data are often used to estimate mean time between failure 
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(MTBF) and other parameters from which predictions are made concerning equipment lifetimes, optimal 
maintenance intervals and the like.  The various analysis tools developed for this purpose are typically grouped 
according to whether (1) monitoring stops after a certain time has elapsed or (2) after a given number of failures have 
been recorded.  These monitoring alternatives are referred to as Type I and Type II censoring, respectively. 
 
Since calibration history data are taken and recorded at periodic intervals of weeks, months or years, specific time at 
which instruments transition to an out-of-tolerance state (i.e. "fail") are unknown.  Instead, such test data consist of 
intervals of time between calibrations together with information on how many failures occurred within these 
intervals.  To distinguish this situation from that encountered elsewhere, we refer to monitoring schemes built around 
such unknown failure times as Type III censoring.  With Type III censoring, whether monitoring stops after certain 
numbers of failures occur or certain elapsed times are reached is immaterial. 
 
In this paper we present a basic methodology for analyzing Type III censored data.  The method is particularly 
appropriate for the determination of calibration and test intervals for standards, test equipment and test systems.  For 
purposes of discussion, we employ the exponential distribution to model the reliability function.  In addition to its 
simplicity, results obtained using the exponential model are valid whether instruments are renewed (adjusted, 
repaired, etc.) at every calibration or are renewed only if found out-of-tolerance.  For clarity of discussion, the 
present treatment is best viewed in the context of the former alternative.  Extension to other distributions and to 
"renew if out-of-tolerance only" policies is fairly straightforward. 
 
We initially discuss the nature of the data in some detail in Section 2. Section 3 deals with the estimation of the 
exponential failure rate parameter using the maximum likelihood technique and a simpler less precise approach.  The 
application of the parameter estimate to the prediction of calibration and test intervals is covered in Section 4. And 
then finally, Section 5 presents several numerical examples. 
 

2.0 TEST DATA 
 
A population of instruments which undergo periodic testing will arrive at the testing lab at various times.  It might be 
supposed that most of these times would be somewhat close to their assigned test interval, but such there is no 
guarantee that this is the case.  Usually there will be several different values for the time elapsed since the last test.  
The value for the jth such time will be represented by tj. 
 
Several instruments could arrive at very close to the same elapsed time.  The number of instruments arriving at or 
near the elapsed time ti will be represented by nj. 
 
After testing each instrument, it is determined whether the instrument has failed 
or not.  In calibration terms, this would correspond to whether the instrument 
was out-of-tolerance or not.  The number of instruments being found in-
tolerance with an elapsed time of ti time will be represented by sj. 
 
A hypothetical set of data for a period of seven months is shown in Table 2.1. 
In this table, it can be seen that two (n6 = 2) of the instruments were in the field 
for six months (t6 = 6).  Of these two instruments, only one was found to have 
passed its test (s6 = 1). 
 

3.0 ESTIMATION AND INFERENCE 
 
In this section we develop the methodology for estimating the exponential failure rate parameter from test data.  With the 
exponential distribution, the probability of an instrument not failing during an interval of length ti is given by 

 Pr(No failure before ) t
jt e λ−= , (3.1) 

TABLE 2.1 
Test Data 

j t n s 
1 1 1 1 
2 2 3 3 
3 3 1 1 
4 4 2 2 
5 5 5 4 
6 6 2 1 
7 7 1 1 



 

 

where � is the exponential failure rate parameter.  In what follows, we develop an estimate for this parameter using both a 
simple approach and the maximum likelihood technique.  Also, using certain properties of the maximum likelihood 
technique, we develop confidence limits for the estimates obtained. 
 

3.1 A SIMPLE APPROACH 
 
A simple approach to estimating the failure rate parameter �, given in (3.1), is as follows.  First, find the total 
number of instruments tested, N, and the number of passing instruments, S. These are given by 
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Next, find the average amount of time between tests, T. This is a simple weighted average of the test times given by 
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The proportion of failures during this average time T can be approximated by 

 Pr(No failures before ) /T S N= . (3/1/4) 

Using equation (3.1), we can then write 
 0/ TS N e λ−= , (3.1.5) 

where �0 is our estimate of �.  Solving for (3.1.5) for �0 yields 

 0
1 ln( / )S N
T

λ = − . (3.1.6) 

Applying this procedure to the data of Table 2.1, the total number of instruments tested is N = 15 with S = 13 of the 
instruments passing.  The average time between tests, found using (3.1.3) is T = 4.13333. Inserting these values into 
equation (3.1.6) yields 

 0
1 ln(13. /15) 0.03462

4.13333
λ = − = . (3.1.7) 

In the course of this investigation, estimates obtained in this way were surprisingly close to the more precise 
estimates obtained using the maximum likelihood technique which will be discussed in the next section. 
 

3.2 MAXIMUM LIKELIHOOD ESTIMATE 
 
In this section we develop the-maximum likelihood estimate of the exponential failure rate parameter �, as given in 
(3.1). This method is not appropriate for hand calculation, but is simple to program on a desktop computer or 
programmable calculator. 
 
We first develop a likelihood function which is basically an equation which gives the probability of having sampled 
our particular set of test data.  The maximum likelihood technique requires us to maximize this likelihood with 
respect to our parameter of interest, which is the failure rate parameter �. This will be done using a numerical 
technique (Newton-Raphson) since a closed form expression for the maximum likelihood estimate of � is not 
available. 
 



 

 

The probability of having sj out of nj instruments pass a test after an interval of length tj is simply given by a binomial 
probability law.  This is given mathematically by 

 ( ) ( )Pr(  passes) 1
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Using this result, the likelihood for the test data described in Section 2.0 is given by 
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The maximum likelihood estimate is found by setting the derivative of the log of L with respect to � equal to zero.  
This is given by 
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It is then necessary to solve (3.2.4) for λ to get the maximum likelihood estimate of λ. If we set m = 1, n1 = N, s1 = S 
and t1 = T, the solution for (3.2.4) is just λ0 as given in (3.1.6).  Unfortunately, equation (3.2.4) cannot be solved 
explicitly unless m = 1.  Therefore, in most cases it will be necessary to solve for λ using an iterative technique such 
as the Newton-Raphson technique. 
 
First we need an initial estimate of λ. The most likely candidate would be the simple approach estimate, λ0 given in 
(3.1.6). It is then necessary to define the derivative of F(λ) with respect to λ. This is given by 
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We then iteratively define the solution for λ by 

 1 1 1( ) / ( )k k k kF Fλ λ λ λ− − −′= − . (3.2.5) 

This process is continued until the relative change in λk is negligible, i.e., smaller than computer accuracy.  For a 
FORTRAN single precision variable, this can be accomplished by iterating until 

 ( ) / ( ) 0.000001k k

k

F Fλ λ
λ

′
≤ . (3.2.6) 

The final value of λk is taken as the maximum likelihood estimate λ.   
 
Using this procedure on the data of Table 2.1, the maximum likelihood estimate of λ is given by λ  = 0.03551. This 
solution was found using the FORTRAN program given in the Appendix. It should be noted at this point that the 
estimate given by the simple approach, λ0 = 0.03462, compares very favorably with the maximum likelihood 
estimate. 
 

3.3 CONFIDENCE LIMITS 
 
In this section, we will define confidence limits for the failure rate parameter estimates from the previous sections.  
In order to do this it will be necessary to derive equations for the estimated standard errors.  In both the simple and 
maximum likelihood cases, the standard error estimate is obtained using maximum likelihood estimation theory 
methods.  Then limits for the estimates will be given. 
 



 

 

For the simple approach estimate, the standard error is calculated using the second derivative of the log-likelihood 
function F' given in (3.2.5) where m = 1, n1 = N, s1 = S and t1 = T (N, S and T are defined in Section 3.1). This gives 
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The standard error for λ0 is then given by 
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The standard error could be used in the usual fashion to compute confidence limits by adding and subtracting a 
multiple of the standard error from the parameter estimate.  However, this can result in obtaining negative lower 
limits.  A simple means of getting around this problem is to use the exponent of the standard error which would be 
obtained if ln(λ) were estimated rather than λ.  This results in limits which are strictly positive.  If we define Z to be 
the (1 - α/2)×100th percentile of the normal distribution, then the upper and lower limits for a (1-α)×100 percent 
confidence interval for λ0 are given by 
 00 /

0 0
Z SU e λ λλ λ= , (3.3.3) 

and 
 00 /

0 0
Z SL e λ λλ λ −= . (3.3.4) 

For a 95 percent confidence level one would use Z = 1.96, while for a 90 percent confidence level one would use Z = 
1.645.   
 
For the data in Table 2.1, the F' function is 
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Using (3.3.2), the standard error for λ0 is then given by 

 0

1/ 2
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(15)(01665.8463)
0.006326 .
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The upper and lower limits for a two-sided 90 percent level confidence interval are then computed using (3.3.3) and 
(3.3.4) to be 
 (1.645)(0.006326) / 0.03462

0 (0.03462) 0.04676U eλ = = , (3.3.7) 
and 
 (1.645)(0.006326) / 0.03462

0 (0.03462) 0.02563L eλ −= = . (3.3.8) 

The standard error and confidence limits for the maximum likelihood estimate λ are found in a similar manner.  We 
use the function F' given in (3.2.5) to form the standard error of λ 
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Defining Z as before, the upper and lower limits for α (1-α)×100 percent confidence interval for λ are given by 

 /Z SU e λ λλ λ=  (3.3.10) 
and 
 /Z SL e λ λλ λ −=  (3.3.11) 



 

 

For the data in Table 2.1, the standard error of λ is 0.006494 as computed in the program described in the Appendix. 
Using equations (3.3.10) and (3.3.11), the upper and lower confidence limits for a 90 percent confidence interval are 
computed to be 0.04797 and 0.02629, respectively. 
 

4.0 PREDICTING CALIBRATION INTERVALS 
 
A major application of the analysis of periodic test data is in the prediction of optimum test intervals.  In this section 
we develop an estimate of this interval using the results developed in Section 3.0. 
 
The reliability of an instrument at the end of a test interval I is given by 

 ( ) IR I e λ−= . (4.1) 
Solving (4.1) for I gives 

 1 ln( )I R
λ

= − . (4.2) 

Therefore, a simple estimate of the test interval I is given by 

 0
0

1 ln( )i R
λ

= − , (4.3) 

where R is the reliability target.  Using asymptotic methods, an approximate standard error for i0 can be estimated 
using 

0
Sλ  from (3.3.2) by 
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1 ln( )iS R Sλλ
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Upper and lower confidence limits for the predicted test interval can be defined using the confidence limits for λ0 
given in (3.3.3) and (3.3.4). The limits are 

 0
0

1 ln( )U
Li R

λ
= −  (4.5) 

and 

 0
0

1 ln( )L
Ui R

λ
= − . (4.6) 

Using the data of Table 2.1 with λ0 = 0.03462, 
0

Sλ = 0.006326, 0
Uλ = 0.04676 and 0

Lλ = 0.02563 as given in Section 
3, and R = 0.85, the simple estimate of the test interval along with its standard error and 90 percent confidence limits 
is given by 
 0 ln(0.85) /0.03462 4.69i = − =  (4.7) 

 
0

2ln(0.85) (0.006326) /(0.03462) 0.8578iS = =  (4.8) 

 0 ln(0.85) /0.02563 6.34Ui = − =  (4.9) 

 0 ln(0.85) /0.04676 3.48Li = − = . (4.10) 

In a similar manner, the maximum likelihood estimate of the test interval is given by 

 ln( ) /i R λ= − , (4.11) 

and an approximate standard error of the estimate is given by 

 2ln( ) /iS R Sλ λ= . (4.12) 

The associated upper and lower confidence limits for this estimate are defined using λU and λL as defined in (3.3.10) 
and (3.3.11). The limits are 
 ln( ) /U Li R λ= − , (4.13) 



 

 

and 
 ln( ) /L Ui R λ= − . (4.14) 

Using the data of Table 2.1 with λ = 0.03551, Sλ = 0.006494, λU = 0.04797 and λL = 0.02629 as given in Section 3, 
and R = 0.85, the maximum likelihood estimate of the test interval along with its standard error and 90 percent 
confidence limits is given by 
 ln(0.85) /0.03551 4.57i = − =  (4.15) 

 2ln(0.85) (0.006494) /(0.03551) 0.8369iS = =  (4.16) 

 ln(0.85) /0.02629 6.18Ui = − =  (4.17) 

 ln(0.85) /0.04797 3.39Li = − = . (4.18) 

 

5.0 EXAMPLES 
 
In this section, we consider three numerical examples taken from hypothetical data.  The calculations were 
performed by the FORTRAN program listed in the Appendix. All the results are developed using 90 percent 
confidence levels (Z = 1.645) and a target reliability of 0.85 (R = 0.85). 
 
In the tables that follow, the data are listed followed by three columns of probability estimates.  The first is the 
sample proportion p, given by 
 /j j jp s n= . (4.19) 
This is followed by the predicted reliability r0 using the simple estimate and the predicted reliability r using the 
maximum likelihood estimate which are given by 
 00 jt

jr e λ−= , (4.20) 
and 
 jt

jr e λ−= . (4.20) 

The data and probability estimates are followed by the simple estimates and confidence limits for the failure 
parameter λ and the test interval I. Then finally, the maximum likelihood estimates and confidence limits are printed. 
The first example shows the complete results for the data which were initially given in Table 2.1. These results are 
given in Table 5.1. It will be recalled that the simple estimates provided essentially the same analysis as the 
maximum likelihood analysis. 
 
 

TABLE 5.1  COMPLETE ANALYSIS OF TABLE 2.1 DATA 
 

Data 

 
 
 
Simple Estimates 

 

t n s p r0 r 

1 1 1 1.0000 0.9660 0.9651 
2 3 3 1.0000 0.9331 0.9314 
3 1 1 1.0000 0.9013 0.8989 
4 2 2 1.0000 0.8707 0.8676 
5 5 4 0.8000 0.8410 0.8373 
6 2 1 0.5000 0.8124 0.8081 
7 1 1 1.0000 0.7848 0.7799 



 

 

 
 

Maximum Likelihood Estimates 
 

 
 
The second example, shown in Table 5.2, represents a situation where very little data are available.  It should be 
noted that with a small amount of data, such as in this example, the confidence limits will be wider than if there were 
more data available. 
 

TABLE 5.2  EXAMPLE ANALYSIS WITH LITTLE DATA 

Data 

 
Simple Estimates 

 

 
Maximum Likelihood Estimates 

 

 
The third example, shown in Table 5.3, portrays a situation where a great deal of data are available.  In this situation 
the estimation of the parameter and the test interval is very accurate and the confidence intervals are very tight. 
 

Failure Rate Standard Error Upper Limit Lower Limit 
0.03462 0.006326 0.04676 0.02563 

Test Interval Standard Error Upper Limit Lower Limit 
4.6942 0.8578 6.3403 3.4755 

Failure Rate Standard Error Upper Limit Lower Limit 
0.03551 0.006494 0.04797 0.02629 

Test Interval Standard Error Upper Limit Lower Limit 
4.5765 0.8369 6.1827 3.3876 

t n s p r0 r 

1 1 1 1.0000 0.9622 0.9606 
2 1 1 1.0000 0.9258 0.9228 
3 1 1 1.0000 0.8908 0.8864 
4 1 1 1.0000 0.8571 0.8515 
5 1 1 1.0000 0.8247 0.8179 
6 1 0 0.0000 0.7936 0.7857 
7 1 1 1.0000 0.7636 0.7548 

Failure Rate Standard Error Upper Limit Lower Limit 
0.03854 0.014580 0.07181 0.02068 

Test Interval Standard Error Upper Limit Lower Limit 
4.2171 1.5955 7.8579 2.2632 

Failure Rate Standard Error Upper Limit Lower Limit 
0.04019 0.015228 0.07496 0.02155 

Test Interval Standard Error Upper Limit Lower Limit 
4.0434 1.5320 7.5409 2.1680 



 

 

TABLE 5.3  EXAMPLE ANALYSIS WITH LOTS OF DATA 
 

Data 

 
Simple Estimates 

 

 
Maximum Likelihood Estimates 

 

 
In all three situations, the similarity between the simple estimate results and the full maximum likelihood results are 
remarkable.  Although the conditions under which this similarity holds are not precisely known at present, it's quite 
possible that the simple estimate could be appropriate for many applications. 
 

6.0  CONCLUSIONS 
 
In this paper, we have presented a methodology which is applicable to the analysis of periodic test data.  This 
method assumes that our knowledge is limited to the time elapsed since an instrument was last tested and the 
observation that the instrument either did or did not fail during this interval.  The method is distinguished from 
classical methods which assume that failure times are known. 
 
 
APPENDIX    TEST DATA ANALYSIS PROGRAM 
 

Program NCSL

c**********************************************
c
c Type III Test Data Analysis Program
c
c**********************************************

c*** Declarations.

Real t(100),n(100),S(100),i0,iU0,iL0,i,iU,iL
Character File*26;

t n s p r0 r 

1 1000 967 0.9670 0.9648 0.9640 
2 1000 933 0.9330 0.9309 0.9293 
3 1000 933 0.9330 0.8982 0.8959 
4 1000 900 0.9000 0.8666 0.8636 
5 1000 833 0.8330 0.8361 0.8325 
6 1000 767 0.7670 0.8067 0.8026 
7 1000 733 0.7330 0.7783 0.7737 

Failure Rate Standard Error Upper Limit Lower Limit 
0.03580 0.000014 0.03583 0.03578 

Test Interval Standard Error Upper Limit Lower Limit 
4.5393 0.0018 4.5422 4.5364 

Failure Rate Standard Error Upper Limit Lower Limit 
0.03666 0.000014 0.03668 0.03664 

Test Interval Standard Error Upper Limit Lower Limit 
4.4334 0.00174 4.4363 4.4306 



 

 

c*** Open the input file.

write(6,*) 'NCSL TYPE III DATA ANALYSIS PROGRAM
Write(6,*) 'Input file?'
Read (5, '(a)') Fi I e
Open(ll,File=File,Status='UNKNOWN')

c*** Read the data table.

M = 0
c Loop
10 Continue

Read(11,'()',End=15) t(M+l),n(M+1),s(M+1)
M = M + 1
Go to 10

15 Continue
c End Loop

c*** Calculate simple estimate.

Sums = 0.0
Sumt = 0.0
Sumn = 0.0
Do 20 j = 1,M
Sums = Sums + s(j)
Sumt = Sumt + t(j)*n(j)
Sumn = Sumn + n(j)

20 Continue

tbar = Sumt/Sumn
b0 = -log(Sums/Sumn)/tbar

DF - -1.0 * (Sumn - Sums)*tbar/(exp(b0*tbar) - 1.0)
DF = DF*tbar*exp(b0*tbar)/(exp(b0*tbar) - 1.0)
Sb0 = Sqrt(-l.0/Sumn/DF)

c*** Confidence interval for the simple estimate.

bU0 = b0 * exp(1.645*Sb0/b0)
bL0 - b0 * exp(-1.645*Sb0/b0)

c*** Calibration Interval Inference for the simple estimate.

i0 = -log(0.85) / b0
Si0 = Abs(log(0.85)/b0/b0)*Sb0
iU0 = -1og(0.85) / bL0
iL0 = -log(0.85) / bU0

c*** Maximum Likelihood Estimate.

F = 1000.0
DF = 1000.0
b = b0 + F/DF

30 If (Abs(F/DF/b).gt.0.00000l) then
b = b - F/DF
F = 0.0
DF = 0.0
Do 40 j = 1,M
Denom = (n(j) - s(j))*t(j)/(exp(b*t(j)) - 1.0)
F = F + Denom - s(j)*t(j)



 

 

DF = DF - Denom*t(j)*exp(b*t(j))/(exp(b*t(j)) - 1.0)
40 Continue

Go to 30
End If

Sb = Sqrt(-l.0/Sumn/DF)

c*** Confidence interval for the maximum likelihood estimate.

bU = b * exp(1.645*Sb/b)
bL = b * exp(-1.645*Sb/b)

c*** Calibration Interval Inference.

i = 1og(0.85) / b
Si Abs(log(0.85)/b/b)*Sb
iU = -log(0.85) / bL
iL = -log(0.85) / bU

c*** Print out the data.

Write(6,'(''1''///t34,''Data''/)')
Write(6,10000) 't','n','s','p','r0','r'

I0000 Format(' ',6(A10,1x)/)

Do 50 j = 1,M
p = s(j)/n(j)
r0 = exp(-b0*t(j))
r = exp(-b*t(j))
Write (6, 2000) t(j),n(j),s(j),p,r0,r

20000 Format(' ',3(f10.0,lx),3(f10.4,lx))
50 Continue

c*** Print out the simple estimates.

Write(6,*)
Write(6,*) ' Simple Estimates'

Write(6,30000) 'b0 ','Standard Error','Upper Limit','Lower Limit'
30000 Format(/,' ',4(al5,lx))

Write (6,40000) b0,Sb0,bU0,bL0
40000 Format(' ',4(fl5.8,lx))

Write(6,30000) 'i0 ','Standard Error','Upper Limit','Lower Limit'
Write (6,40000) i0,Si0,iU0,iL0

c*** Print out the maximum likelihood estimates.

Write(6,*)
Write(6,*) ' Maximum Likelihood Estimates'

Write(6,30000)'b ','Standard Error','Upper Limit','Lower Limit'
Write(6,40000) b,Sb,bU,bL

Write(6,30000)'i ','Standard Error','Upper Limit','Lower Limit'
Write(6,40000) i,Si,iU,iL

Write(6,'(''1'')')

Stop
End



 

 


